Patents by Inventor Takahiko Murai
Takahiko Murai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9627702Abstract: A method for producing an electrolyte emulsion, the method including: Step (1) in which an ethylenic fluoromonomer and a fluorovinyl compound having an SO2Z1 group, wherein Z1 is a halogen element, are copolymerized at a polymerization temperature of 0° C. or higher and 40° C. or lower to provide a precursor emulsion containing a fluoropolymer electrolyte precursor; and Step (2) in which a basic reactive liquid is added to the precursor emulsion and the fluoropolymer electrolyte precursor is chemically treated, whereby an electrolyte emulsion with a fluoropolymer electrolyte dispersed therein is provided, wherein the electrolyte emulsion has an equivalent weight (EW) of 250 or more and 700 or less.Type: GrantFiled: June 24, 2016Date of Patent: April 18, 2017Assignees: ASAHI KASEI KABUSHIKI KAISHA, DAIKIN INDUSTRIES, LTD.Inventors: Takahiko Murai, Naoki Sakamoto, Naoto Miyake, Tadashi Ino, Masaharu Nakazawa, Noriyuki Shinoki, Takashi Yoshimura, Masahiro Kondo
-
Publication number: 20160308232Abstract: A method for producing an electrolyte emulsion, the method including: Step (1) in which an ethylenic fluoromonomer and a fluorovinyl compound having an SO2Z1 group, wherein Z1 is a halogen element, are copolymerized at a polymerization temperature of 0° C. or higher and 40° C. or lower to provide a precursor emulsion containing a fluoropolymer electrolyte precursor; and Step (2) in which a basic reactive liquid is added to the precursor emulsion and the fluoropolymer electrolyte precursor is chemically treated, whereby an electrolyte emulsion with a fluoropolymer electrolyte dispersed therein is provided, wherein the electrolyte emulsion has an equivalent weight (EW) of 250 or more and 700 or less.Type: ApplicationFiled: June 24, 2016Publication date: October 20, 2016Applicants: ASAHI KASEI KABUSHIKI KAISHA, DAIKIN INDUSTRIES, LTD.Inventors: Takahiko MURAI, Naoki SAKAMOTO, Naoto MIYAKE, Tadashi INO, Masaharu NAKAZAWA, Noriyuki SHINOKI, Takashi YOSHIMURA, Masahiro KONDO
-
Patent number: 9468924Abstract: The disclosure includes a method for producing a dispersion composition of fluorine-containing ion exchange resin comprising a copolymer represented by formula: wherein x and y represent numbers satisfying 0?x<1, 0?y<1, and x+y=1; Z represents H, Cl, F, or a perfluoroalkyl group having 1 to 3 carbon atoms; m represents an integer of 0 to 12; and n represents an integer of 0 to 2.Type: GrantFiled: December 13, 2012Date of Patent: October 18, 2016Assignee: Asahi Kasei E-materials CorporationInventors: Takahiko Murai, Kohei Kita, Naoki Sakamoto
-
Patent number: 9406958Abstract: The present invention provides a fluoropolymer electrolyte material which has improved processability and which is easily produced. The electrolyte emulsion of the present invention comprises an aqueous medium and a fluoropolymer electrolyte dispersed in the aqueous medium. The fluoropolymer electrolyte has a monomer unit having an SO3Z group (Z is an alkali metal, an alkaline-earth metal, hydrogen, or NR1R2R3R4, and R1, R2, R3, and R4 each are individually a C1-C3 alkyl group or hydrogen). The fluoropolymer electrolyte has an equivalent weight (EW) of 250 or more and 700 or less and a proton conductivity at 110° C. and relative humidity 50% RH of 0.10 S/cm or higher. The fluoropolymer electrolyte is a spherical particulate substance having an average particle size of 10 to 500 nm. The fluoropolymer electrolyte has a ratio (the number of SO2F groups)/(the number of SO3Z groups) of 0 to 0.01.Type: GrantFiled: August 10, 2015Date of Patent: August 2, 2016Assignees: ASAHI KASEI KABUSHIKI KAISHA, DAIKIN INDUSTRIES, LTD.Inventors: Takahiko Murai, Naoki Sakamoto, Naoto Miyake, Tadashi Ino, Masaharu Nakazawa, Noriyuki Shinoki, Takashi Yoshimura, Masahiro Kondo
-
Publication number: 20150349366Abstract: The present invention provides a fluoropolymer electrolyte material which has improved processability and which is easily produced. The electrolyte emulsion of the present invention comprises an aqueous medium and a fluoropolymer electrolyte dispersed in the aqueous medium. The fluoropolymer electrolyte has a monomer unit having an SO3Z group (Z is an alkali metal, an alkaline-earth metal, hydrogen, or NR1R2R3R4, and R1, R2, R3, and R4 each are individually a C1-C3 alkyl group or hydrogen). The fluoropolymer electrolyte has an equivalent weight (EW) of 250 or more and 700 or less and a proton conductivity at 110° C. and relative humidity 50% RH of 0.10 S/cm or higher. The fluoropolymer electrolyte is a spherical particulate substance having an average particle size of 10 to 500 nm. The fluoropolymer electrolyte has a ratio (the number of SO2F groups)/(the number of SO3Z groups) of 0 to 0.01.Type: ApplicationFiled: August 10, 2015Publication date: December 3, 2015Applicants: DAIKIN INDUSTRIES, LTD., ASAHI KASEI E-MATERIALS CORPORATIONInventors: Takahiko MURAI, Naoki SAKAMOTO, Naoto MIYAKE, Tadashi INO, Masaharu NAKAZAWA, Noriyuki SHINOKI, Takashi YOSHIMURA, Masahiro KONDO
-
Patent number: 9133316Abstract: The present invention provides a fluoropolymer electrolyte material which has improved processability and which is easily produced. The electrolyte emulsion of the present invention comprises an aqueous medium and a fluoropolymer electrolyte dispersed in the aqueous medium. The fluoropolymer electrolyte has a monomer unit having an SO3Z group (Z is an alkali metal, an alkaline-earth metal, hydrogen, or NR1R2R3R4, and R1, R2, R3, and R4 each are individually a C1-C3 alkyl group or hydrogen). The fluoropolymer electrolyte has an equivalent weight (EW) of 250 or more and 700 or less and a proton conductivity at 110° C. and relative humidity 50% RH of 0.10 S/cm or higher. The fluoropolymer electrolyte is a spherical particulate substance having an average particle size of 10 to 500 nm. The fluoropolymer electrolyte has a ratio (the number of SO2F groups)/(the number of SO3Z groups) of 0 to 0.01.Type: GrantFiled: September 17, 2010Date of Patent: September 15, 2015Assignees: ASAHI KASEI E-MATERIALS CORPORATION, DAIKIN INDUSTRIES, LTD.Inventors: Takahiko Murai, Naoki Sakamoto, Naoto Miyake, Tadashi Ino, Masaharu Nakazawa, Noriyuki Shinoki, Takashi Yoshimura, Masahiro Kondo
-
Patent number: 8993682Abstract: The present invention provides an electrolyte having high conductivity even under high-temperature low-humidification conditions (e.g. at a temperature of 100 to 120° C. and a humidity of 20 to 50% RH) and thereby makes it possible to realize a higher performance fuel cell. The present invention is a fluoropolymer electrolyte having an equivalent weight (EW) of not less than 250 but not more than 700 and a proton conductivity of not lower than 0.10 S/cm as measured at a temperature of 110° C. and a relative humidity of 50% RH and comprising a COOZ group- or SO3Z group-containing monomer unit, wherein Z represents an alkali metal, an alkaline earth metal, hydrogen atom or NR1R2R3R4 in which R1, R2, R3 and R4 each independently represents an alkyl group containing 1 to 3 carbon atoms or hydrogen atom.Type: GrantFiled: March 12, 2009Date of Patent: March 31, 2015Assignees: Asahi Kasei E-Materials Corporation, Daikin Industries, Ltd.Inventors: Kohei Kita, Takahiko Murai, Naoki Sakamoto, Naoto Miyake, Tadashi Ino, Noriyuki Shinoki, Masaharu Nakazawa, Masahiro Kondo, Takashi Yoshimura
-
Patent number: 8685591Abstract: A dispersion composition including a fluorine-containing ion exchange resin having a repeating unit represented by the formulae (1) and a repeating unit represented by the formulae (2), and having an equivalent weight of 400 to 1000 g/eq; and a solvent comprising water, wherein Z represents H, Cl, F, or a perfluoroalkyl group having 1 to 3 carbon atoms; m represents an integer of 0 to 12; and n represents an integer of 0 to 2, and wherein an abundance ratio of a resin having a particle size of 10 ?m or more in the fluorine-containing ion exchange resin is 0.1% to 80% by volume.Type: GrantFiled: March 31, 2009Date of Patent: April 1, 2014Assignee: Asahi Kasei E-materials CorporationInventors: Takahiko Murai, Kohei Kita, Naoki Sakamoto
-
Publication number: 20120178017Abstract: The present invention provides a fluoropolymer electrolyte material which has improved processability and which is easily produced. The electrolyte emulsion of the present invention comprises an aqueous medium and a fluoropolymer electrolyte dispersed in the aqueous medium. The fluoropolymer electrolyte has a monomer unit having an SO3Z group (Z is an alkali metal, an alkaline-earth metal, hydrogen, or NR1R2R3R4, and R1, R2, R3, and R4 each are individually a C1-C3 alkyl group or hydrogen). The fluoropolymer electrolyte has an equivalent weight (EW) of 250 or more and 700 or less and a proton conductivity at 110° C. and relative humidity 50% RH of 0.10 S/cm or higher. The fluoropolymer electrolyte is a spherical particulate substance having an average particle size of 10 to 500 nm. The fluoropolymer electrolyte has a ratio (the number of SO2F groups)/(the number of SO3Z groups) of 0 to 0.01.Type: ApplicationFiled: September 17, 2010Publication date: July 12, 2012Applicants: DAIKIN INDUSTRIES, LTD., ASAHI KASEI E-MATERIALS CORPORATIONInventors: Takahiko Murai, Naoki Sakamoto, Naoto Miyake, Tadashi Ino, Masaharu Nakazawa, Noriyuki Shinok, Takashi Yoshimura, Masahiro Kondo
-
Publication number: 20110027684Abstract: Problems to be Solved There is provided a dispersion composition of fluorine-containing ion exchange resin, which has an extremely low solution viscosity even in a case in which the concentration of a fluorine-containing ion exchange resin is increased by a concentration operation in a liquid composition in which the fluorine-containing ion exchange resin is dispersed. Solution A dispersion composition of fluorine-containing ion exchange resin, which comprises a fluorine-containing ion exchange resin having a repeating unit represented by the following formulae (1) and (2) and having an equivalent weight of 400 to 1000 g/eq, and a solvent containing water, wherein Z represents H, Cl, F, or a perfluoroalkyl group containing 1 to 3 carbon atoms; m represents an integer of 0 to 12; and n represents an integer of 0 to 2, and wherein an abundance ratio of a resin having a particle size of 10 ?m or more in the fluorine-containing ion exchange resin is 0.1% to 80% by volume.Type: ApplicationFiled: March 31, 2009Publication date: February 3, 2011Inventors: Takahiko Murai, Kohei Kita, Naoki Sakamoto
-
Publication number: 20110020728Abstract: The present invention provides an electrolyte having high conductivity even under high-temperature low-humidification conditions (e.g. at a temperature of 100 to 120° C. and a humidity of 20 to 50% RH) and thereby makes it possible to realize a higher performance fuel cell. The present invention is a fluoropolymer electrolyte having an equivalent weight (EW) of not less than 250 but not more than 700 and a proton conductivity of not lower than 0.10 S/cm as measured at a temperature of 110° C. and a relative humidity of 50% RH and comprising a COOZ group- or SO3Z group-containing monomer unit, wherein Z represents an alkali metal, an alkaline earth metal, hydrogen atom or NR1R2R3R4 in which R1, R2, R3 and R4 each independently represents an alkyl group containing 1 to 3 carbon atoms or hydrogen atom.Type: ApplicationFiled: March 12, 2009Publication date: January 27, 2011Applicants: Asahi Kasei E-Materials Corporation, Daikin Industries, Ltd.Inventors: Kohei Kita, Takahiko Murai, Naoki Sakamoto, Naoto Miyake, Tadashi Ino, Noriyuki Shinoki, Masaharu Nakazawa, Masahiro Kondo, Takashi Yoshimura
-
Patent number: D1064053Type: GrantFiled: January 18, 2023Date of Patent: February 25, 2025Assignees: Roland Corporation, KARIMOKU FURNITURE INC.Inventors: Takahiko Fujimori, Yusuke Iwabata, Kenta Mitsuishi, Takahiro Murai