Patents by Inventor Takahiro Hakamata

Takahiro Hakamata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11621190
    Abstract: A method for filling recessed features with a low-resistivity metal. The method includes providing a patterned substrate containing a recessed feature formed in a first layer and a second layer that is exposed in the recessed feature, and pre-treating the substrate with a surface modifier that increases metal deposition selectivity on the second layer relative to on the first layer, depositing a metal layer on the substrate by vapor phase deposition, where the metal layer is preferentially deposited on the second layer in the recessed feature, and removing metal nuclei deposited on the first layer, including on a field area and on sidewalls of the first layer in the recessed feature, to selectively form the metal layer on the second layer in the recessed feature. The steps of pre-treating, depositing and removing may be repeated at least once to increase a thickness of the metal layer in the recessed feature.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: April 4, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, David O'Meara, Nicholas Joy, Gyanaranjan Pattanaik, Robert Clark, Kandabara Tapily, Takahiro Hakamata, Cory Wajda, Gerrit Leusink
  • Publication number: 20220310812
    Abstract: A semiconductor device includes a first raised feature in a NFET region on a substrate, a first n-type doped epitaxial semiconductor material grown on the first raised feature, the first n-type doped epitaxial material having a first upward facing surface and a first downward facing surface, a first contact metal on the first downward facing surface, and a second contact metal on the first upward facing surface. The device further includes a second raised feature in a PFET region on the substrate, a second p-type doped epitaxial semiconductor material grown on the second raised feature, the second p-type doped epitaxial material having a second upward facing surface and a second downward facing surface, a third contact metal on the second downward facing surface, and a fourth contact metal on the second upward facing surface, wherein the fourth contact metal is different from the second contact metal.
    Type: Application
    Filed: June 15, 2022
    Publication date: September 29, 2022
    Inventors: Hiroaki Niimi, Kandabara N Tapily, Takahiro Hakamata
  • Patent number: 11374101
    Abstract: A semiconductor device includes a first raised feature in a NFET region on a substrate, a first n-type doped epitaxial semiconductor material grown on the first raised feature, the first n-type doped epitaxial material having a first upward facing surface and a first downward facing surface, a first contact metal on the first downward facing surface, and a second contact metal on the first upward facing surface. The device further includes a second raised feature in a PFET region on the substrate, a second p-type doped epitaxial semiconductor material grown on the second raised feature, the second p-type doped epitaxial material having a second upward facing surface and a second downward facing surface, a third contact metal on the second downward facing surface, and a fourth contact metal on the second upward facing surface, wherein the fourth contact metal is different from the second contact metal.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: June 28, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Hiroaki Niimi, Kandabara N Tapily, Takahiro Hakamata
  • Publication number: 20210287936
    Abstract: A method for filling recessed features with a low-resistivity metal. The method includes providing a patterned substrate containing a recessed feature formed in a first layer and a second layer that is exposed in the recessed feature, and pre-treating the substrate with a surface modifier that increases metal deposition selectivity on the second layer relative to on the first layer, depositing a metal layer on the substrate by vapor phase deposition, where the metal layer is preferentially deposited on the second layer in the recessed feature, and removing metal nuclei deposited on the first layer, including on a field area and on sidewalls of the first layer in the recessed feature, to selectively form the metal layer on the second layer in the recessed feature. The steps of pre-treating, depositing and removing may be repeated at least once to increase a thickness of the metal layer in the recessed feature.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Inventors: Kai-Hung Yu, David O'Meara, Nicholas Joy, Gyanaranjan Pattanaik, Robert Clark, Kandabara Tapily, Takahiro Hakamata, Cory Wajda, Gerrit Leusink
  • Patent number: 11024535
    Abstract: A method for filling recessed features with a low-resistivity metal. The method includes providing a patterned substrate containing a recessed feature formed in a first layer and a second layer that is exposed in the recessed feature, and pre-treating the substrate with a surface modifier that increases metal deposition selectivity on the second layer relative to on the first layer, depositing a metal layer on the substrate by vapor phase deposition, where the metal layer is preferentially deposited on the second layer in the recessed feature, and removing metal nuclei deposited on the first layer, including on a field area and on sidewalls of the first layer in the recessed feature, to selectively form the metal layer on the second layer in the recessed feature. The steps of pre-treating, depositing and removing may be repeated at least once to increase a thickness of the metal layer in the recessed feature.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: June 1, 2021
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, David O'Meara, Nicholas Joy, Gyanaranjan Pattanaik, Robert Clark, Kandabara Tapily, Takahiro Hakamata, Cory Wajda, Gerrit Leusink
  • Publication number: 20200279942
    Abstract: A semiconductor device includes a first raised feature in a NFET region on a substrate, a first n-type doped epitaxial semiconductor material grown on the first raised feature, the first n-type doped epitaxial material having a first upward facing surface and a first downward facing surface, a first contact metal on the first downward facing surface, and a second contact metal on the first upward facing surface. The device further includes a second raised feature in a PFET region on the substrate, a second p-type doped epitaxial semiconductor material grown on the second raised feature, the second p-type doped epitaxial material having a second upward facing surface and a second downward facing surface, a third contact metal on the second downward facing surface, and a fourth contact metal on the second upward facing surface, wherein the fourth contact metal is different from the second contact metal.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 3, 2020
    Inventors: Hiroaki Niimi, Kandabara N. Tapily, Takahiro Hakamata
  • Publication number: 20200118871
    Abstract: A method for filling recessed features with a low-resistivity metal. The method includes providing a patterned substrate containing a recessed feature formed in a first layer and a second layer that is exposed in the recessed feature, and pre-treating the substrate with a surface modifier that increases metal deposition selectivity on the second layer relative to on the first layer, depositing a metal layer on the substrate by vapor phase deposition, where the metal layer is preferentially deposited on the second layer in the recessed feature, and removing metal nuclei deposited on the first layer, including on a field area and on sidewalls of the first layer in the recessed feature, to selectively form the metal layer on the second layer in the recessed feature. The steps of pre-treating, depositing and removing may be repeated at least once to increase a thickness of the metal layer in the recessed feature.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 16, 2020
    Inventors: Kai-Hung Yu, David O'Meara, Nicholas Joy, Gyanaranjan Pattanaik, Robert Clark, Kandabara Tapily, Takahiro Hakamata, Cory Wajda, Gerrit Leusink
  • Patent number: 10378105
    Abstract: Embodiments of the invention provide methods for selective deposition on different materials using a surface treatment. According to one embodiment, the method includes providing a substrate containing a first material layer having a first surface and a second material layer having a second surface, and performing a chemical oxide removal process that terminates that second surface with hydroxyl groups. The method further includes modifying the second surface by exposure to a process gas containing a hydrophobic functional group, the modifying substituting the hydroxyl groups on the second surface with the hydrophobic functional group, and selectively depositing a metal-containing layer on the first surface but not on the modified second surface by exposing the substrate to a deposition gas.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: August 13, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Kandabara N. Tapily, Takahiro Hakamata, Subhadeep Kal, Gerrit J. Leusink
  • Patent number: 10361366
    Abstract: A plurality of embodiments for ReRAM devices and method of making are described. According to one embodiment, the ReRAM device includes a first electrode film formed on a substrate, a metal oxide film with oxygen vacancies formed on a first electrode film, a conformal TiAlC film, oxidized by diffused oxygen atoms from the metal oxide film, formed on the metal oxide film, and a second electrode film formed on the TiAlC film. According to another embodiment, the ReRAM device includes a pair of vertical metal oxide films, a pair of vertical conformal TiAlC films formed on the pair of vertical metal oxide films, the pair of vertical conformal TiAlC films oxidized by diffused oxygen atoms from the pair of vertical metal oxide films, and an electrode film formed between the pair of vertical conformal TiAlC films.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: July 23, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Takahiro Hakamata, Genji Nakamura, Sara Aoki, Toshio Hasegawa, Takamichi Kikuchi
  • Publication number: 20190044064
    Abstract: A plurality of embodiments for ReRAM devices and method of making are described. According to one embodiment, the ReRAM device includes a first electrode film formed on a substrate, a metal oxide film with oxygen vacancies formed on a first electrode film, a conformal TiAlC film, oxidized by diffused oxygen atoms from the metal oxide film, formed on the metal oxide film, and a second electrode film formed on the TiAlC film. According to another embodiment, the ReRAM device includes a pair of vertical metal oxide films, a pair of vertical conformal TiAlC films formed on the pair of vertical metal oxide films, the pair of vertical conformal TiAlC films oxidized by diffused oxygen atoms from the pair of vertical metal oxide films, and an electrode film formed between the pair of vertical conformal TiAlC films.
    Type: Application
    Filed: August 3, 2018
    Publication date: February 7, 2019
    Inventors: Takahiro Hakamata, Genji Nakamura, Sara Aoki, Toshio Hasegawa, Takamichi Kikuchi
  • Patent number: 10056328
    Abstract: A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: August 21, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Publication number: 20170342553
    Abstract: Embodiments of the invention provide methods for selective deposition on different materials using a surface treatment. According to one embodiment, the method includes providing a substrate containing a first material layer having a first surface and a second material layer having a second surface, and performing a chemical oxide removal process that terminates that second surface with hydroxyl groups. The method further includes modifying the second surface by exposure to a process gas containing a hydrophobic functional group, the modifying substituting the hydroxyl groups on the second surface with the hydrophobic functional group, and selectively depositing a metal-containing layer on the first surface but not on the modified second surface by exposing the substrate to a deposition gas.
    Type: Application
    Filed: May 31, 2017
    Publication date: November 30, 2017
    Inventors: Kai-Hung Yu, Kandabara N. Tapily, Takahiro Hakamata, Subhadeep Kal, Gerrit J. Leusink
  • Publication number: 20170317022
    Abstract: A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Publication number: 20170241014
    Abstract: A method for material deposition is described in several embodiments. According to one embodiment, the method includes providing a substrate defining features to receive a deposition of material, initiating a flow of a Ru carbonyl precursor to the substrate, the Ru carbonyl precursor decomposing within the defined features such that a Ru metal film is deposited on surfaces of the defined features and CO gas is released, and stopping the flow of the Ru carbonyl precursor to the substrate. The method further includes flowing additional CO gas to the substrate after stopping the flow of the Ru carbonyl precursor to the substrate, and repeatedly cycling between process steps of flowing the Ru carbonyl precursor to the substrate and flowing the additional CO gas to the substrate. In one embodiment, the Ru carbonyl precursor contains Ru3(CO)12.
    Type: Application
    Filed: February 17, 2017
    Publication date: August 24, 2017
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Patent number: 9711449
    Abstract: A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: July 18, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata
  • Publication number: 20160358815
    Abstract: A method is provided for at least partially filling a feature in a substrate. The method includes providing a substrate containing a feature, depositing a ruthenium (Ru) metal layer to at least partially fill the feature, and heat-treating the substrate to reflow the Ru metal layer in the feature.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 8, 2016
    Inventors: Kai-Hung Yu, Gerrit J. Leusink, Cory Wajda, Tadahiro Ishizaka, Takahiro Hakamata