Patents by Inventor Takahiro Ide
Takahiro Ide has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11594382Abstract: Provided is a solar cell module including photoelectric conversion elements, wherein each of the photoelectric conversion elements includes a first substrate, and a first electrode, a hole blocking layer, an electron transport layer, a hole transport layer, a second electrode, and a second substrate on the first substrate, and a sealing member between the first substrate and the second substrate, and wherein, within at least two of the photoelectric conversion elements adjacent to each other, the hole-blocking layers are not extended to each other but the hole transport layers are in a state of a continuous layer where the hole transport layers are extended to each other.Type: GrantFiled: February 19, 2019Date of Patent: February 28, 2023Assignee: RICOH COMPANY, LTD.Inventors: Yuuji Tanaka, Tamotsu Horiuchi, Nozomu Tamoto, Takahiro Ide, Naomichi Kanei
-
Publication number: 20230021035Abstract: A linearly moving mechanism includes an internal moving body provided within a case body and configured to be moved in a linear direction, the internal moving body being configured to move an external moving body connected to a connection member protruded from the case body through an opening formed at the case body; a seal belt extending in the linear direction and provided within the case body to close the opening, a first surface side of both end portions of the seal belt in a widthwise direction thereof facing an edge portion of the opening while being spaced apart therefrom; and a deformation suppressing member provided to face a second surface side of the both end portions to suppress deformation of the seal belt, the seal belt being connected to the internal moving body to be moved along with a movement of the internal moving body.Type: ApplicationFiled: December 7, 2020Publication date: January 19, 2023Inventors: Masami Akimoto, Naruaki Iida, Tsunenaga Nakashima, Keisuke Sasaki, Takahiro Yasutake, Kazuya Matsushita, Kousei Ide, Masato Ozeki
-
Patent number: 11522495Abstract: A photoelectric conversion module includes a substrate, a photoelectric conversion element mounted on the substrate, and a connector mounted on the substrate, the connector including a terminal that is electrically coupled to the photoelectric conversion element, wherein the connector is configured such that coupling the connector to a connector of another photoelectric conversion module causes the photoelectric conversion element to be electrically coupled to a photoelectric conversion element of the another photoelectric conversion module.Type: GrantFiled: May 28, 2020Date of Patent: December 6, 2022Assignee: Ricoh Company, Ltd.Inventors: Takahiro Ide, Naomichi Kanei
-
Patent number: 11503261Abstract: A processing device generates a marker image to use as a reference for correcting a shape of a projection image projected on a projection surface from a projector, takes a taken image of the projection surface using the imaging device from an imaging position different from an observation position from which the projection surface is observed, generates a parameter for reducing a distortion of the projection image based on the marker image included in the taken image, displays an area image representing a range wherein projection can be performed on the projection surface on the display device, disposes a video content at an indicating position in the area image with an input to the input device, generates an original image including the video content, and corrects the original image thereby generating an input image for input to a projector configured to project the projection image.Type: GrantFiled: July 27, 2021Date of Patent: November 15, 2022Assignee: SEIKO EPSON CORPORATIONInventors: Kentaro Ide, Toshiki Fujimori, Makoto Shigemitsu, Takahiro Otsu
-
Publication number: 20220317712Abstract: To provide a digitally controlled LDO regulator that can control an output voltage even during an auto-zero processing period. A digitally controlled low dropout regulator is provided that includes a plurality of AD converters and an impedance variable circuit, each of the plurality of AD converters including a comparator, in which a first signal from each of the plurality of AD converters is input to the impedance variable circuit; a second signal output from the impedance variable circuit is input to one of two terminals of each of the plurality of AD converters; when one of the plurality of AD converters is in operation, another of the plurality of AD converters performs auto-zero processing to set a voltage value used as a reference; and the comparator compares a voltage value of the second signal input to the one of the two terminals with the set voltage value.Type: ApplicationFiled: March 16, 2020Publication date: October 6, 2022Inventors: DAISUKE IDE, NOBUHIKO SHIGYO, KEITA KOMAGATA, HIROYUKI WATANABE, TAKAHIRO NAITO
-
Publication number: 20220302399Abstract: A photoelectric conversion element includes a first electrode section; a second electrode section; an electron-transporting section between the first electrode section and the second electrode section; a light-absorbing section; and a hole-transporting section. The hole-transporting section has a peak that reaches maximum at a Raman shift of 1575 cm?1±10 cm?1 and a peak that reaches maximum at a Raman shift of 1606 cm ?1±10 cm?1 in a Raman spectrum obtained by emitting laser light having a wavelength of 532 nm; and has a peak intensity ratio A/B of 0.80 or more, the peak intensity ratio A/B being obtained from a maximum peak intensity A of the peak that reaches maximum at 1575 cm?1±10 cm?1 and a maximum peak intensity B of the peak that reaches maximum at 1606 cm?1±10 cm?1.Type: ApplicationFiled: June 9, 2020Publication date: September 22, 2022Applicant: Ricoh Company, Ltd.Inventors: Nozomu Tamoto, Yuuji Tanaka, Tamotsu Horiuchi, Naomichi Kanei, Takahiro Ide, Yoshiaki Masuda
-
Publication number: 20210399321Abstract: A fuel cell system including a fuel cell, an off-gas reprocessing unit that is provided downstream of the fuel cell and that at least partially removes at least one of steam or carbon dioxide from an off-gas discharged from the fuel cell, a flow passage that is provided downstream of the off-gas reprocessing unit and that allows a reprocessed off-gas discharged from the off-gas reprocessing unit to flow therethrough, and a controlling unit that modulates the reaction constant Kpa of a reaction A with respect to the reprocessed off-gas discharged from the off-gas reprocessing unit, to 1.22 or more.Type: ApplicationFiled: October 28, 2019Publication date: December 23, 2021Inventors: Kazuo NAKAMURA, Takahiro IDE, Tatsuya NAKAJIMA, Toru HATAE, Tatsuki DOHKOH, Marie SHIRAI, Shunnosuke AKABANE
-
Publication number: 20210366662Abstract: A solar cell module (100) including: a substrate (1); and a plurality of photoelectric conversion elements disposed on the substrate (1), each of the plurality of photoelectric conversion elements including a first electrode (2a, 2b), an electron transport layer (3, 4), a perovskite layer (5), a hole transport layer (6), and a second electrode (7a, 7b), wherein, within at least two of the photoelectric conversion elements adjacent to each other, the hole transport layers (6) are continuous with each other, and the first electrodes (2a, 2b), the electron transport layers (3, 4), and the perovskite layers (5) are separated by the hole transport layer (6) within the at least two of the photoelectric conversion elements adjacent to each other.Type: ApplicationFiled: September 25, 2019Publication date: November 25, 2021Inventors: Tamotsu HORIUCHI, Nozomu TAMOTO, Takahiro IDE, Yuuji TANAKA, Naomichi KANEI
-
Publication number: 20210305886Abstract: The continuous wires respectively have U-shaped parts and straight parts. The method includes: a transposition shape forming step of forming transposition shapes in each of which, among at least the two continuous wires belonging to an identical phase, the U-shaped part of one of the continuous wires is disposed inside the U-shaped part of the other one of the continuous wires; an inclined part forming step of causing the pairs of straight parts of the continuous wires respectively formed with the transposition shapes to be offset to form inclined parts on the continuous wires; and a folding step of folding the continuous wires formed with the inclined parts to form the turning parts and the slot disposition parts. The inclined part forming step and the folding step are alternately performed.Type: ApplicationFiled: March 24, 2021Publication date: September 30, 2021Inventors: Takahiro IDE, Akihiro WATANABE
-
Publication number: 20210296603Abstract: A photoelectric conversion element is provided which includes a first electrode, an electron transport layer, a photoelectric conversion layer, a hole transport layer, a second electrode, and an insulating layer each overlying a substrate. The first electrode includes a transparent conductive thin-film layer (a), a metal thin-film layer, and a transparent conductive thin-film layer (b). The electron transport layer contains metal oxide particles. The photoelectric conversion layer contains two or more organic materials. The photoelectric conversion element satisfies the following relation: 7.0?T/D?40.0 where D represents an average particle diameter of the metal oxide particles and T represents an average thickness of the photoelectric conversion layer.Type: ApplicationFiled: July 11, 2019Publication date: September 23, 2021Inventors: Ryota ARAI, Takahiro IDE
-
Patent number: 11081662Abstract: A photoelectric conversion element is provided. The photoelectric conversion element comprises a substrate, a first electrode, an electron transport layer, a hole transport layer, and a second electrode. The electron transport layer comprises a photosensitizing compound. The hole transport layer comprises a basic compound A and an ionic compound B. The basic compound A is represented by the following formula (1): where each of R1 and R2 independently represents an alkyl group or an aromatic hydrocarbon group, or R1 and R2 share bond connectivity to form a nitrogen-containing heterocyclic ring; and the ionic compound B is represented by the following formula (2): where X+ represents a counter cation.Type: GrantFiled: May 13, 2020Date of Patent: August 3, 2021Assignee: Ricoh Company, Ltd.Inventors: Yuuji Tanaka, Tsuyoshi Matsuyama, Tamotsu Horiuchi, Takahiro Ide, Tokushige Kino, Shigeyo Suzuki, Naomichi Kanei
-
Publication number: 20210202155Abstract: A coil-forming apparatus for forming a bare coil wire into a U-shape, the apparatus comprising: one bare coil-wire holding unit that winds and holds a bare coil wire; a take-up drum that includes one or a plurality of housing units that house the bare coil wire supplied from the one bare coil wire holding unit at a circumference; a cutting member that cuts the bare coil wire housed in housing units and wound around the take-up drum, at a portion of the circumference of the take-up drum; a drawing member for drawing the bare coil wire outward in a radial direction of the take-up drum after being cut by the cutting member, from a position separated from the cutting member; and a forming unit that forms the bare coil wire drawn by the drawing member into a U-shape.Type: ApplicationFiled: November 23, 2020Publication date: July 1, 2021Inventors: Takahiro Ide, Kenichi Omagari
-
Publication number: 20210167287Abstract: A photoelectric conversion element including: a first electrode; a perovskite layer; a hole-transporting layer; and a second electrode, wherein the hole-transporting layer includes a compound represented by General Formula (1) or (1a) below; where M represents an alkali metal; X1 and X2, which may be identical to or different from each other, each represent at least one selected from the group consisting of a carbonyl group, a sulphonyl group, and a sulfinyl group; and X3 represents at least one selected from the group consisting of a bivalent alkyl group, an alkenyl group, and an aryl group, and a hydrogen atom of the bivalent alkyl group, the alkenyl group, and the aryl group may be substituted with a halogen atom; where M+ represents an organic cation; and X1, X2, and X3 have the same meanings as X1, X2, and X3 in the General Formula (1).Type: ApplicationFiled: November 25, 2020Publication date: June 3, 2021Inventors: Tamotsu HORIUCHI, Takahiro IDE, Yuuji TANAKA, Nozomu TAMOTO, Naomichi KANEI, Masana SHIBA
-
Publication number: 20210142957Abstract: A photoelectric conversion element may include a first substrate, a first transparent electrode disposed on the first substrate, a hole-blocking layer disposed on the first transparent electrode, an electron-transporting layer that is disposed on the hole-blocking layer and includes an electron-transporting semiconductor on a surface of which a photosensitizing compound is adsorbed, a hole-transporting layer that is connected to the electron-transporting layer and includes a hole-transporting material, and a second electrode disposed on the hole-transporting layer, wherein the photoelectric conversion element includes an output extraction terminal part configured to extract electricity out from the photoelectric conversion element, and the output extraction terminal part is formed with a plurality of micropores piercing through the hole-blocking layer.Type: ApplicationFiled: January 22, 2021Publication date: May 13, 2021Inventors: Tsuyoshi MATSUYAMA, Yuuji TANAKA, Tamotsu HORIUCHI, Takahiro IDE, Tokushige KINO, Shigeyo SUZUKI, Naomichi KANEI
-
Publication number: 20210104367Abstract: Provided is a solar cell module including photoelectric conversion elements, wherein each of the photoelectric conversion elements includes a first substrate, and a first electrode, a hole blocking layer, an electron transport layer, a hole transport layer, a second electrode, and a second substrate on the first substrate, and a sealing member between the first substrate and the second substrate, and wherein, within at least two of the photoelectric conversion elements adjacent to each other, the hole-blocking layers are not extended to each other but the hole transport layers are in a state of a continuous layer where the hole transport layers are extended to each other.Type: ApplicationFiled: February 19, 2019Publication date: April 8, 2021Inventors: Yuuji TANAKA, Tamotsu HORIUCHI, Nozomu TAMOTO, Takahiro IDE, Naomichi KANEI
-
Patent number: 10951079Abstract: A coil for a rotary electric machine is mounted in a plurality of slots of a stator core having the slots in a circumferential direction. An overlapping coil-type wave winding coil constituted by a coil wire having a plurality of slot accommodating portions accommodated in the slots and a plurality of coil end portions interconnecting, in a chevron shape, the slot accommodating portions next to each other outside the slots in an axial direction of the stator core constitutes the coil. At least two layers of the coil wire are connected by a continuous wire-based connecting portion, folded back in the connecting portion, and stacked.Type: GrantFiled: January 31, 2019Date of Patent: March 16, 2021Assignee: HONDA MOTOR CO., LTD.Inventors: Keiichiro Oka, Kenichi Omagari, Takahiro Ide
-
Patent number: 10930443Abstract: To provide a photoelectric conversion element, including a first substrate, a first transparent electrode disposed on the first substrate, a hole-blocking layer disposed on the first transparent electrode, an electron-transporting layer that is disposed on the hole-blocking layer and includes an electron-transporting semiconductor on a surface of which a photosensitizing compound is adsorbed, a hole-transporting layer that is connected to the electron-transporting layer and includes a hole-transporting material, and a second electrode disposed on the hole-transporting layer, wherein the photoelectric conversion element includes an output extraction terminal part configured to extract electricity out from the photoelectric conversion element, and the output extraction terminal part is formed with a plurality of micropores piercing through the hole-blocking layer.Type: GrantFiled: November 27, 2017Date of Patent: February 23, 2021Assignee: Ricoh Company, Ltd.Inventors: Tsuyoshi Matsuyama, Yuuji Tanaka, Tamotsu Horiuchi, Takahiro Ide, Tokushige Kino, Shigeyo Suzuki, Naomichi Kanei
-
Publication number: 20210013412Abstract: Provided is a photoelectric conversion element including a first electrode, an electron-transporting layer including a photosensitizing compound, a hole-transporting layer, and a second electrode, wherein the hole-transporting layer includes a p-type semiconductor material and a basic compound, ionization potential of the hole-transporting layer is greater than ionization potential of the p-type semiconductor material, and is less than 1.07 times the ionization potential of the p-type semiconductor material, ionization potential of the photosensitizing compound is greater than the ionization potential of the hole-transporting layer, and an acid dissociation constant (pKa) of the basic compound is 6 or greater but 10 or less.Type: ApplicationFiled: March 13, 2019Publication date: January 14, 2021Inventors: Naomichi KANEI, Tamotsu HORIUCHI, Yuuji TANAKA, Nozomu TAMOTO, Takahiro IDE
-
Publication number: 20200382055Abstract: A photoelectric conversion module includes a substrate, a photoelectric conversion element mounted on the substrate, and a connector mounted on the substrate, the connector including a terminal that is electrically coupled to the photoelectric conversion element, wherein the connector is configured such that coupling the connector to a connector of another photoelectric conversion module causes the photoelectric conversion element to be electrically coupled to a photoelectric conversion element of the another photoelectric conversion module.Type: ApplicationFiled: May 28, 2020Publication date: December 3, 2020Applicant: Ricoh Company, Ltd.Inventors: Takahiro IDE, Naomichi KANEI
-
Patent number: 10847323Abstract: A photoelectric conversion element including a first electrode, an electron transport layer on the first electrode, a charge transfer layer, and a second electrode is provided. The electron transport layer includes an electron transport compound, and the electron transport compound carries a compound represented by the following formula (1) and a compound represented by the following formula (2): where each of X1 and X2 independently represents oxygen atom, sulfur atom, or selenium atom; R1 represents methine group; R2 represents an alkyl group, an aryl group, or a heterocyclic group; each of R3 independently represents an acidic group; m represents an integer of 1 or 2; and each of Z1 and Z2 independently represents a group forming a cyclic structure; R5—R4—COOH??Formula (2) where R4 represents an aryl group or a heterocyclic group; and R5 represents an alkyl group, an alkoxy group, an alkenyl group, an alkylthio group, or an aryl ether group.Type: GrantFiled: April 24, 2019Date of Patent: November 24, 2020Assignee: Ricoh Company, Ltd.Inventors: Tamotsu Horiuchi, Yuuji Tanaka, Tsuyoshi Matsuyama, Takahiro Ide, Tokushige Kino, Shigeyo Suzuki, Naomichi Kanei