Patents by Inventor Takahiro Ishinabe

Takahiro Ishinabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230367157
    Abstract: A dimming device includes a pair of transparent substrates and a liquid crystal layer sandwiched between the pair of transparent substrates. The liquid crystal layer includes a vertical alignment agent, and the dimming device has a drive voltage of 25 V or less for providing a haze of 80% or more.
    Type: Application
    Filed: September 8, 2021
    Publication date: November 16, 2023
    Inventors: Yuichi Momoi, Takahiro Ishinabe, Hideo Fujikake, Yosei Shibata
  • Patent number: 10228498
    Abstract: An optical-diffusion film for display which, particularly when applied to a display device using a collimated backlight as a backlight for the display panel, can efficiently diffuse and emit a highly directional light emitted from the collimated backlight toward the front of the display device as image display light, without allowing straight transmission of the highly directional light, and a display device using the optical-diffusion film for display are provided. Disclosed is a single layered optical-diffusion film having a columnar structure in which plural pillar-shaped objects having a relatively high refractive index are arranged to stand close together in a film thickness direction in a region having a relatively low refractive index, in which the film thickness of the optical-diffusion film has a value within the range of 60 to 700 ?m, and the haze value obtainable in the case in which light is made incident in the normal line direction of the film plane has a value of 80% or more.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 12, 2019
    Assignees: LINTEC CORPORATION, TOHOKU UNIVERSITY
    Inventors: Kentaro Kusama, Baku Katagiri, Tomoo Orui, Satoru Shoshi, Hideo Fujikake, Takahiro Ishinabe
  • Patent number: 10185063
    Abstract: Provided are an optical-diffusion film for display which, particularly when applied to a reflective display device, can efficiently diffuse and emit an external light incident from a wide range of angles toward the front of the display device as image display light, and a reflective display device using the optical-diffusion film.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: January 22, 2019
    Assignee: LINTEC Corporation
    Inventors: Kentaro Kusama, Baku Katagiri, Tomoo Orui, Satoru Shoshi, Hideo Fujikake, Takahiro Ishinabe
  • Publication number: 20180321551
    Abstract: A flexible liquid crystal display device which is obtained by sandwiching a liquid crystal layer between a first substrate and a second substrate, and wherein: the liquid crystal layer-side surface of at least one of the first substrate and the second substrate is provided with a first polarizing film and a second polarizing film; and the first polarizing film and the second polarizing film contain a dye-based polarizing material.
    Type: Application
    Filed: October 27, 2016
    Publication date: November 8, 2018
    Inventors: Norio KOMA, Daichi FUJIWARA, Takahiro ISHINABE, Hideo FUJIKAKE
  • Patent number: 9939127
    Abstract: A lighting device (100) includes: a surface light source (1); a first lens (L1) having a first focal point (F1), the first lens being provided on the light exit surface side of the surface light source; and a second lens (L2) having a second focal point (F2), the second lens being provided on a light exit surface side of the first lens, the surface light source, the first lens, and the second lens being configured such that a first virtual image (I1) is formed by the first lens and a second virtual image (I2) is formed by the second lens, wherein the first virtual image (I1) is formed between the second focal point (F2) and the first lens, and the second focal point (F2) is on a side opposite to the light source side relative to a predetermined focal position f?.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: April 10, 2018
    Assignees: Sharp Kabushiki Kaisha, TOHOKU UNIVERSITY
    Inventors: Tatsuo Uchida, Yoshito Suzuki, Tohru Kawakami, Takahiro Ishinabe, Katsunori Ehara, Yoshihiro Hashimoto, Toshiki Matsuoka, Kozo Nakamura, Yasuhisa Itoh, Yoshitaka Yamamoto, Yutaka Ishii, David Montgomery
  • Patent number: 9507197
    Abstract: A lighting device includes: a light guide plate; a light source; and a light modulation element disposed on a surface of or in the inside of the light guide plate, and adhered to the light guide plate. The light modulation element has a pair of transparent substrates, a first electrode provided on a surface of one of the transparent substrates, a second electrode provided on a surface of the other of the transparent substrates, and a light modulation layer, provided in a gap between the transparent substrates, exhibiting a light-scattering property or a light-transmitting property concerning light from the light source depending on intensity of an electric field. One or both of the first and second electrodes include partial electrodes. First partial electrodes of the partial electrodes are adjacent to second partial electrodes of the partial electrodes, and have irregular shapes on edges adjacent to the second partial electrodes.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: November 29, 2016
    Assignees: Sony Corporation, Tohoku University
    Inventors: Tatsuo Uchida, Takahiro Ishinabe, Tohru Kawakami, Kentaro Okuyama, Mamoru Mizuno
  • Patent number: 9310619
    Abstract: To provide a thin optical sheet having improved efficiency for light utilization, an optical sheet (5) of one mode of the present invention includes, in sequence from a light entry side to a light emission side, a plurality of first prisms (13), a ¼ wavelength plate (11), and a polarized-light separating element (12), the plurality of first prisms (13) each having (i) a first surface (13a) through which light enters the first prism and (ii) a second surface (13b) that reflects the light, having entered the first prism, toward the light emission side, the optical film further including, between the plurality of first prisms in an in-plane direction of the optical film, a second prism (14) that reflects light.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: April 12, 2016
    Assignees: Sharp Kabushiki Kaisha, Tohoku University
    Inventors: Tatsuo Uchida, Yoshito Suzuki, Tohru Kawakami, Kazuo Sekiya, Masahiro Nishizawa, Takahiro Ishinabe, Katsunori Ehara, Yoshihiro Hashimoto, Yasuhisa Itoh, Yoshitaka Yamamoto, Yutaka Ishii
  • Publication number: 20160085114
    Abstract: A display device includes a display panel and a backlight. The display panel has the first substrate, the second substrate, a liquid crystal layer sandwiched between the first and second substrates, the first circularly polarizing plate arranged on the observer's side of the first substrate, the second circularly polarizing plate arranged between the second substrate and the backlight, and a scattering film arranged on the observer's side of the first circularly polarizing plate.
    Type: Application
    Filed: September 18, 2015
    Publication date: March 24, 2016
    Inventors: Shinichiro OKA, Takahiro Ishinabe, Hideo Fujikake
  • Publication number: 20160077246
    Abstract: Provided are an optical-diffusion film for display which, particularly when applied to a reflective display device, can efficiently diffuse and emit an external light incident from a wide range of angles toward the front of the display device as image display light, and a reflective display device using the optical-diffusion film.
    Type: Application
    Filed: March 13, 2014
    Publication date: March 17, 2016
    Inventors: Kentaro KUSAMA, Baku KATAGIRI, Tomoo ORUI, Satoru SHOSHI, Hideo FUJIKAKE, Takahiro ISHINABE
  • Publication number: 20160070035
    Abstract: An optical-diffusion film for display which, particularly when applied to a display device using a collimated backlight as a backlight for the display panel, can efficiently diffuse and emit a highly directional light emitted from the collimated backlight toward the front of the display device as image display light, without allowing straight transmission of the highly directional light, and a display device using the optical-diffusion film for display are provided. Disclosed is a single layered optical-diffusion film having a columnar structure in which plural pillar-shaped objects having a relatively high refractive index are arranged to stand close together in a film thickness direction in a region having a relatively low refractive index, in which the film thickness of the optical-diffusion film has a value within the range of 60 to 700 ?m, and the haze value obtainable in the case in which light is made incident in the normal line direction of the film plane has a value of 80% or more.
    Type: Application
    Filed: March 13, 2014
    Publication date: March 10, 2016
    Inventors: Kentaro KUSAMA, Baku KATAGIRI, Tomoo ORUI, Satoru SHOSHI, Hideo FUJIKAKE, Takahiro ISHINABE
  • Patent number: 9217552
    Abstract: A lighting device (100) includes: a surface light source (1); a first lens (L1) having a first focal point (F1), the first lens being provided on the light exit surface side of the surface light source; and a second lens (L2) having a second focal point (F2), the second lens being provided on a light exit surface side of the first lens, the surface light source, the first lens, and the second lens being configured such that a first virtual image (I1) is formed by the first lens and a second virtual image (I2) is formed by the second lens, wherein the first virtual image (I1) is formed between the second focal point (F2) and the first lens, the second focal point (F2) is on a side opposite to the light source side relative to a predetermined focal position f?, and at least either of a light entry surface or a light exit surface of the first lens or the second lens includes a non-revolution surface (SO) as a lens surface, and a plurality of boundary lines (B1-B4) whose curvatures vary discontinuously are provid
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: December 22, 2015
    Assignees: Sharp Kabushiki Kaisha, Tohoku University
    Inventors: Tatsuo Uchida, Yoshito Suzuki, Tohru Kawakami, Takahiro Ishinabe, Katsunori Ehara, Yoshihiro Hashimoto, Toshiki Matsuoka, Kozo Nakamura, Yasuhisa Itoh, Yoshitaka Yamamoto, Yutaka Ishii
  • Patent number: 9122097
    Abstract: A backlight system (30) includes a light emitting section (31) and an imaging optical system. The imaging optical system includes a first microlens array (MLA1) and a second microlens array (MLA2). The lenses (1A) separates the beams of light emitted from the light emitting section (31) by RGB, and causes them to be converged at a pitch same as a pitch at which the picture elements are arrayed. The lenses (2A) are provided in one-to-one correspondence to the picture elements such that the lenses (2A) have their respective focal points at positions onto which beams of light having passed through the lenses (1A) are converged. The lenses (2A) thus deflect the beams of light which have passed through the lenses (1A) in a substantially vertical direction with respect to the display surface of the liquid crystal panel.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: September 1, 2015
    Assignees: Sharp Kabushiki Kaisha, Tohoku University
    Inventors: Tatsuo Uchida, Yoshito Suzuki, Tohru Kawakami, Kazuo Sekiya, Masahiro Nishizawa, Takahiro Ishinabe, Baku Katagiri, Katsunori Ehara, Yoshihiro Hashimoto, Shoichi Ishihara, Shuichi Kozaki, Yutaka Ishii
  • Publication number: 20150211709
    Abstract: A lighting device (100) includes: a surface light source (1); a first lens (L1) having a first focal point (F1), the first lens being provided on the light exit surface side of the surface light source; and a second lens (L2) having a second focal point (F2), the second lens being provided on a light exit surface side of the first lens, the surface light source, the first lens, and the second lens being configured such that a first virtual image (I1) is formed by the first lens and a second virtual image (I2) is formed by the second lens, wherein the first virtual image (I1) is formed between the second focal point (F2) and the first lens, and the second focal point (F2) is on a side opposite to the light source side relative to a predetermined focal position f?.
    Type: Application
    Filed: July 26, 2013
    Publication date: July 30, 2015
    Applicants: Sharp Kabushiki Kaisha, TOHOKU UNIVERSITY
    Inventors: Tatsuo Uchida, Yoshito Suzuki, Tohru Kawakami, Takahiro Ishinabe, Katsunori Ehara, Yoshihiro Hashimoto, Toshiki Matsuoka, Kozo Nakamura, Yasuhisa Itoh, Yoshitaka Yamamoto, Yutaka Ishii, David Montgomery
  • Publication number: 20150167924
    Abstract: A lighting device (100) includes: a surface light source (1); a first lens (L1) having a first focal point (F1), the first lens being provided on the light exit surface side of the surface light source; and a second lens (L2) having a second focal point (F2), the second lens being provided on a light exit surface side of the first lens, the surface light source, the first lens, and the second lens being configured such that a first virtual image (I1) is formed by the first lens and a second virtual image (I2) is formed by the second lens, wherein the first virtual image (I1) is formed between the second focal point (F2) and the first lens, the second focal point (F2) is on a side opposite to the light source side relative to a predetermined focal position f?, and at least either of a light entry surface or a light exit surface of the first lens or the second lens includes a non-revolution surface (SO) as a lens surface, and a plurality of boundary lines (B1-B4) whose curvatures vary discontinuously are provid
    Type: Application
    Filed: July 2, 2013
    Publication date: June 18, 2015
    Inventors: Tatsuo Uchida, Yoshito Suzuki, Tohru Kawakami, Takahiro Ishinabe, Katsunori Ehara, Yoshihiro Hashimoto, Toshiki Matsuoka, Kozo Nakamura, Yasuhisa Itoh, Yoshitaka Yamamoto, Yutaka Ishii
  • Publication number: 20150036215
    Abstract: To provide a thin optical sheet having improved efficiency for light utilization, an optical sheet (5) of one mode of the present invention includes, in sequence from a light entry side to a light emission side, a plurality of first prisms (13), a ¼ wavelength plate (11), and a polarized-light separating element (12), the plurality of first prisms (13) each having (i) a first surface (13a) through which light enters the first prism and (ii) a second surface (13b) that reflects the light, having entered the first prism, toward the light emission side, the optical film further including, between the plurality of first prisms in an in-plane direction of the optical film, a second prism (14) that reflects light.
    Type: Application
    Filed: February 15, 2013
    Publication date: February 5, 2015
    Inventors: Tatsuo Uchida, Yoshito Suzuki, Tohru Kawakami, Kazuo Sekiya, Masahiro Nishizawa, Takahiro Ishinabe, Katsunori Ehara, Yoshihiro Hashimoto, Yasuhisa Itoh, Yoshitaka Yamamoto, Yutaka Ishii
  • Publication number: 20150015456
    Abstract: A multi-display device (101) of the present invention includes fry-eye lens arrays (3), located between a plurality of liquid crystal modules (11) arranged in parallel and in a tiling manner and a diffusing element (12), which cause rays of light emitted from light source sections (2) and transmitted through the liquid crystal modules (11) to be condensed on the diffusing element (12) at a pitch that is wider than a pixel pitch of the liquid crystal modules (11). This makes it possible with a simple configuration to make seams between image modulation elements less conspicuous and give a satisfactory feeling of resolution.
    Type: Application
    Filed: February 14, 2013
    Publication date: January 15, 2015
    Applicant: TOUOKU UNIVERISTY
    Inventors: Tatsuo Uchida, Yoshito Suzuki, Tohru Kawakami, Kazuo Sekiya, Masahiro Nishizawa, Takahiro Ishinabe, Katsunori Ehara, Yoshihiro Hashimoto, Yasuhisa Itoh, Yoshitaka Yamamoto, Yutaka Ishii
  • Patent number: 8922735
    Abstract: A backlight system includes: a light-emitting section (1) having a plurality of light sources that emit beams of light at different dominant wavelengths from one another; and an imaging optical system (3) including a plurality of microlenses (3a) that focus beams of light emitted from the light-emitting section (1), the backlight system irradiating a liquid crystal panel with beams of light having passed through the imaging optical system (3), the liquid crystal panel including a plurality of pixels arrayed at a predetermined pitch from each other, on the assumption that the pitch at which the pixels are arrayed is denoted as P and the imaging optical system (3) has an imaging magnification of (1/n), the light sources (1) being arrayed at a pitch (P1) given as P1=n×P, the microlenses (3a) being arrayed at a pitch (P2) given as P2=(n/(n+1))×P.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: December 30, 2014
    Assignees: Sharp Kabushiki Kaisha, Tohoku University
    Inventors: Tatsuo Uchida, Yoshito Suzuki, Tohru Kawakami, Kazuo Sekiya, Masahiro Nishizawa, Takahiro Ishinabe, Baku Katagiri, Yoshihiro Hashimoto, Shoichi Ishihara, Shuichi Kozaki, Yutaka Ishii
  • Patent number: 8810752
    Abstract: A thin backlight system includes: a light emitting section emitting lights that have different dominant wavelengths; and a plurality of light transmitting portions, the thin backlight system deflecting the lights and then converging the lights on the plurality of light transmitting portions. The thin backlight system further includes: an imaging optical system provided to face surfaces, of the plurality of light transmitting portions, on which the lights are converged. The imaging optical system including a plurality of identical lenses arranged in a vertical and/or a horizontal direction at a pitch determined by multiplying a pitch at which the plurality of light transmitting portions are arranged in a vertical and/or a horizontal direction by the number of types of the different dominant wavelengths and being configured to converge the lights from the light emitting section on light transmitting portions to which the different dominant wavelengths of the lights correspond.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: August 19, 2014
    Assignees: Sharp Kabushiki Kaisha, Tohoku University
    Inventors: Tatsuo Uchida, Yoshito Suzuki, Tohru Kawakami, Kazuo Sekiya, Takahiro Ishinabe, Baku Katagiri, Yoshihiro Hashimoto, Shoichi Ishihara, Shuichi Kozaki, Yutaka Ishii
  • Publication number: 20130201424
    Abstract: A backlight system (30) includes a light emitting section (31) and an imaging optical system. The imaging optical system includes a first microlens array (MLA1) and a second microlens array (MLA2). The lenses (1A) separates the beams of light emitted from the light emitting section (31) by RGB, and causes them to be converged at a pitch same as a pitch at which the picture elements are arrayed. The lenses (2A) are provided in one-to-one correspondence to the picture elements such that the lenses (2A) have their respective focal points at positions onto which beams of light having passed through the lenses (1A) are converged. The lenses (2A) thus deflect the beams of light which have passed through the lenses (1A) in a substantially vertical direction with respect to the display surface of the liquid crystal panel.
    Type: Application
    Filed: December 22, 2010
    Publication date: August 8, 2013
    Inventors: Tatsuo Uchida, Yoshito Suzuki, Tohru Kawakami, Kazuo Sekiya, Masahiro Nishizawa, Takahiro Ishinabe, Baku Katagiri, Katsunori Ehara, Yoshihiro Hashimoto, Shoichi Ishihara, Shuichi Kozaki, Yutaka Ishii
  • Patent number: 8493526
    Abstract: A lighting device includes: a light guide plate; a light source disposed on a side face of the light guide plate; and a light modulation element disposed on a surface or in the inside of the light guide plate and adhered to the light guide plate. The light modulation element has a pair of transparent substrates disposed separately and oppositely, a pair of electrodes provided on respective surfaces of the pair of transparent substrates, and a light modulation layer provided in a gap between the pair of transparent substrates. The light modulation layer includes a first region, having optical anisotropy, responsive to an electric field, and a second region, having optical anisotropy, unresponsive to an electric field. The second region has a striped structure with average striped texture size of 0.05 ?m to 10 ?m both inclusive in a short axis direction.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: July 23, 2013
    Assignees: Sony Corporation, Tohoku University
    Inventors: Tatsuo Uchida, Takahiro Ishinabe, Tohru Kawakami, Tomoaki Suzuki, Kentaro Okuyama, Akira Ebisui, Harumi Sato, Mamoru Mizuno, Masahiro Ikeda, Shogo Shinkai