Patents by Inventor Takahiro Kotani

Takahiro Kotani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923833
    Abstract: For example, the switching drive device 100 includes a driver 30 configured to drive an N-type semiconductor switch element, a current limiter 50 configured to limit a current fed to a boot capacitor BC1 included in a bootstrap circuit BTC, and a current controller 60 configured to control the operation of the current limiter 50. The current controller 60 is configured to drive the current limiter 50 to limit the current fed to the boot capacitor BC1 when the charge voltage across the boot capacitor BC1 is higher than a threshold value.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: March 5, 2024
    Assignee: ROHM CO., LTD.
    Inventors: Kenji Hama, Takahiro Kotani
  • Publication number: 20240027282
    Abstract: A semiconductor device includes a power element, a drive circuit configured to drive the power element, and a temperature detection circuit configured to be capable of detecting a temperature of 0° C. or lower. The temperature detection circuit is configured to generate and output, based on a voltage signal that is temperature-temperature, a detection signal having a lower temperature-dependent change rate than the voltage signal.
    Type: Application
    Filed: September 29, 2023
    Publication date: January 25, 2024
    Inventor: Takahiro KOTANI
  • Patent number: 11015017
    Abstract: The resin composition for encapsulating semiconductor of the present invention is a resin composition for encapsulating semiconductor including an epoxy resin, a curing agent, an inorganic filler, and carbon black fine particles, in which when the resin composition for encapsulating semiconductor is injection-molded to have a length of 80 mm, a width of 10 mm and a thickness of 4 mm under conditions of a mold temperature of 175° C., an injection pressure of 10 MPa, and a curing time of 120 seconds, and then heated at 175° C. for 4 hours to obtain a cured product, and then a surface of the obtained cured product is observed with a fluorescence microscope, a maximum particle diameter of aggregates of the carbon black fine particles is 50 ?m or less.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: May 25, 2021
    Assignee: SUMITOMO BAKELITE CO., LTD.
    Inventors: Takahiro Kotani, Hiroshi Shibata
  • Publication number: 20210044290
    Abstract: For example, the switching drive device 100 includes a driver 30 configured to drive an N-type semiconductor switch element, a current limiter 50 configured to limit a current fed to a boot capacitor BC1 included in a bootstrap circuit BTC, and a current controller 60 configured to control the operation of the current limiter 50. The current controller 60 is configured to drive the current limiter 50 to limit the current fed to the boot capacitor BC1 when the charge voltage across the boot capacitor BC1 is higher than a threshold value.
    Type: Application
    Filed: January 15, 2019
    Publication date: February 11, 2021
    Inventors: Kenji HAMA, Takahiro KOTANI
  • Publication number: 20210002414
    Abstract: The resin composition for encapsulating semiconductor of the present invention is a resin composition for encapsulating semiconductor including an epoxy resin, a curing agent, an inorganic filler, and carbon black fine particles, in which when the resin composition for encapsulating semiconductor is injection-molded to have a length of 80 mm, a width of 10 mm and a thickness of 4 mm under conditions of a mold temperature of 175° C., an injection pressure of 10 MPa, and a curing time of 120 seconds, and then heated at 175° C. for 4 hours to obtain a cured product, and then a surface of the obtained cured product is observed with a fluorescence microscope, a maximum particle diameter of aggregates of the carbon black fine particles is 50 ?m or less.
    Type: Application
    Filed: January 30, 2019
    Publication date: January 7, 2021
    Applicant: SUMITOMO BAKELITE CO., LTD.
    Inventors: Takahiro KOTANI, Hiroshi SHIBATA
  • Patent number: 9135677
    Abstract: An apparatus comprising: a determination unit configured to determine whether an object image satisfies a predetermined standard, if the object image is changed to a standard image size predetermined; a changing unit configured to change the standard image size predetermined, in case that the object image does not satisfy a predetermined standard by the determination unit; a generation unit configure to change the image to the image standard image size predetermined set or the standard image size changed by the standard image size changing unit and to generate the layout image.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: September 15, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takahiro Kotani, Yousuke Sugai
  • Patent number: 8921461
    Abstract: An epoxy resin composition for encapsulating a semiconductor chip according to this invention comprises (A) a crystalline epoxy resin, (B) a phenol resin represented by general formula (1): wherein R1 and R2 are independently hydrogen or alkyl having 1 to 4 carbon atoms and two or more R1s or two or more R2s are the same or different; a is integer of 0 to 4; b is integer of 0 to 4; c is integer of 0 to 3; and n is average and is number of 0 to 10, (C) a (co)polymer containing butadiene-derived structural unit or its derivative, and (D) an inorganic filler in the amount of 80 wt % to 95 wt % both inclusive in the total epoxy resin composition.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: December 30, 2014
    Assignee: Sumitomo Bakelite Co., Ltd
    Inventors: Takahiro Kotani, Hidetoshi Seki, Masakatsu Maeda, Kazuya Shigeno, Yoshinori Nishitani
  • Patent number: 8697803
    Abstract: An epoxy resin composition for encapsulating a semiconductor chip according to this invention comprises (A) a crystalline epoxy resin, (B) a phenol resin represented by general formula (1): wherein R1 and R2 are independently hydrogen or alkyl having 1 to 4 carbon atoms and two or more R1s or two or more R2s are the same or different; a is integer of 0 to 4; b is integer of 0 to 4; c is integer of 0 to 3; and n is average and is number of 0 to 10, (C) a (co)polymer containing butadiene-derived structural unit or its derivative, and (D) an inorganic filler in the amount of 80 wt % to 95 wt % both inclusive in the total epoxy resin composition.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: April 15, 2014
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Takahiro Kotani, Hidetoshi Seki, Masakatsu Maeda, Kazuya Shigeno, Yoshinori Nishitani
  • Publication number: 20140010477
    Abstract: An apparatus comprising: a determination unit configured to determine whether an object image satisfies a predetermined standard, if the object image is changed to a standard image size predetermined; a changing unit configured to change the standard image size predetermined, in case that the object image does not satisfy a predetermined standard by the determination unit; a generation unit configure to change the image to the image standard image size predetermined set or the standard image size changed by the standard image size changing unit and to generate the layout image.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 9, 2014
    Inventors: Takahiro Kotani, Yousuke Sugai
  • Publication number: 20130337608
    Abstract: According to the present invention, a structure of a semiconductor device in which adhesive deposits are reduced and yield is excellent; and a process for manufacturing the same can be provided. A process for manufacturing a semiconductor device according to the present invention includes: a step of arranging plural semiconductor elements (106) on a main surface of a thermal release adhesive layer (mount film); a step of forming an encapsulant layer (108), which encapsulates the plural semiconductor elements (106) on the main surface of the mount film, using a semiconductor-encapsulating resin composition; and a step of peeling off the mount film to expose a lower surface (30) of the encapsulant layer (108) and lower surfaces (20) of the semiconductor elements (106). A contact angle of the lower surface (30) of the encapsulant layer (108) is less than or equal to 70° when measured using formamide after the step of peeling off the mount film.
    Type: Application
    Filed: March 9, 2012
    Publication date: December 19, 2013
    Applicant: SUMITOMO BAKELITE CO., LTD.
    Inventors: Takahiro Kotani, Masakatsu Maeda
  • Patent number: 8519067
    Abstract: An epoxy resin composition for encapsulating a semiconductor chip according to this invention comprises (A) a crystalline epoxy resin, (B) a phenol resin represented by general formula (1): wherein R1 and R2 are independently hydrogen or alkyl having 1 to 4 carbon atoms and two or more R1s or two or more R2s are the same or different; a is integer of 0 to 4; b is integer of 0 to 4; c is integer of 0 to 3; and n is average and is number of 0 to 10, (C) a (co)polymer containing butadiene-derived structural unit or its derivative, and (D) an inorganic filler in the amount of 80 wt % to 95 wt % both inclusive in the total epoxy resin composition.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: August 27, 2013
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventors: Takahiro Kotani, Hidetoshi Seki, Masakatsu Maeda, Kazuya Shigeno, Yosinori Nishitani
  • Patent number: 8324326
    Abstract: An epoxy resin composition for encapsulating a semiconductor chip according to this invention comprises (A) a crystalline epoxy resin, (B) a phenol resin represented by general formula (1): wherein R1 and R2 are independently hydrogen or alkyl having 1 to 4 carbon atoms and two or more R1s or two or more R2s are the same or different; a is integer of 0 to 4; b is integer of 0 to 4; c is integer of 0 to 3; and n is average and is number of 0 to 10, (C) a (co)polymer containing butadiene-derived structural unit or its derivative, and (D) an inorganic filler in the amount of 80 wt % to 95 wt % both inclusive in the total epoxy resin composition.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 4, 2012
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Takahiro Kotani, Hidetoshi Seki, Masakatsu Maeda, Kazuya Shigeno, Yoshinori Nishitani
  • Patent number: 8008410
    Abstract: There is provided an epoxy resin composition for encapsulating a semiconductor comprising an epoxy resin (A), wherein the epoxy resin (A) including: a crystalline epoxy resin (a1) having a melting point of 50° C. to 150° C., an epoxy resin (a2) represented by formula (1), and at least one epoxy resin (a3) selected from an epoxy resin represented by formula (2) and an epoxy resin represented by a formula (3): in which R1's, which may be the same or different, represent a hydrocarbon group having 1 to 4 carbon atoms; R2's, which may be the same or different, represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms; m is an integer of 0 to 5; and n is an integer of 0 to 6.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 30, 2011
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Takahiro Kotani, Yoshinori Nishitani, Daisuke Oka
  • Publication number: 20090096114
    Abstract: An epoxy resin composition for encapsulating a semiconductor chip according to this invention comprises (A) a crystalline epoxy resin, (B) a phenol resin represented by general formula (1): wherein R1 and R2 are independently hydrogen or alkyl having 1 to 4 carbon atoms and two or more R1s or two or more R2s are the same or different; a is integer of 0 to 4; b is integer of 0 to 4; c is integer of 0 to 3; and n is average and is number of 0 to 10, (C) a (co)polymer containing butadiene-derived structural unit or its derivative, and (D) an inorganic filler in the amount of 80 wt % to 95 wt % both inclusive in the total epoxy resin composition.
    Type: Application
    Filed: November 13, 2008
    Publication date: April 16, 2009
    Inventors: Takahiro Kotani, Hidetoshi Seki, Masakatsu Maeda, Kazuya Shigeno, Yoshinori Nishitani
  • Publication number: 20080128922
    Abstract: There is provided an epoxy resin composition for encapsulating a semiconductor comprising an epoxy resin (A), wherein the epoxy resin (A) including: a crystalline epoxy resin (a1) having a melting point of 50° C. to 150° C., an epoxy resin (a2) represented by formula (1), and at least one epoxy resin (a3) selected from an epoxy resin represented by formula (2) and an epoxy resin represented by a formula (3): in which R1's, which may be the same or different, represent a hydrocarbon group having 1 to 4 carbon atoms; R2's, which may be the same or different, represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms; m is an integer of 0 to 5; and n is an integer of 0 to 6.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 5, 2008
    Inventors: Takahiro Kotani, Yoshinori Nishitani, Daisuke Oka
  • Publication number: 20060157872
    Abstract: An epoxy resin composition for encapsulating a semiconductor chip containing (A) a crystalline epoxy resin, (B) a phenol resin represented by general formula (1): wherein R1 and R2 are independently hydrogen or alkyl having 1 to 4 carbon atoms and two or more R1s or two or more R2s are the same or different; a is integer of 0 to 4; b is integer of 0 to 4; c is integer of 0 to 3; and n is average and is number of 0 to 10, (C) a (co)polymer containing butadiene-derived structural unit or its derivative, and (D) an inorganic filler in the amount of 80 wt % to 95 wt % both inclusive in the total epoxy resin composition.
    Type: Application
    Filed: November 29, 2005
    Publication date: July 20, 2006
    Inventors: Takahiro Kotani, Hidetoshi Seki, Masakatsu Maeda, Kazuya Shigeno, Yoshinori Nishitani