Patents by Inventor Takahiro Osuki

Takahiro Osuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210292876
    Abstract: There is provided an austenitic heat resistant alloy including a chemical composition that contains, in mass percent: C: 0.04 to 0.18%, Si: 1.5% or less; Mn: 2.0% or less, P: 0.020% or less, S: 0.030% or less, Cu: 0.10% or less, Ni: 20.0 to 30.0%, Cr: 21.0 to 24.0%, Mo: 1.0 to 2.0%, Nb: 0.10 to 0.40%, Ti: 0.20% or less, Al: 0.05% or less, N: 0.10 to 0.35%, and B: 0.0015 to 0.005%, with the balance: Fe and impurities, the austenitic heat resistant alloy satisfying [P+6B?0.040].
    Type: Application
    Filed: October 3, 2017
    Publication date: September 23, 2021
    Inventors: Shinnosuke Kurihara, Hiroyuki Semba, Hirokazu Okada, Junichi Higuchi, Katsuki Tanaka, Takahiro Osuki
  • Patent number: 11041232
    Abstract: An austenitic stainless steel is provided which has a chemical composition that consists, by mass %, of: C: 0.015% or less, Si: 1.00% or less, Mn: 2.00% or less, P: 0.05% or less, S: 0.030% or less, Cr: 16.0% or more and less than 22.0%, Ni: 11.0 to 16.0%, Mo: 2.5 to 5.0%, N: 0.07% or more and less than 0.15%, Nb: 0.20 to 0.50%, Al: 0.005 to 0.040%, Sn: 0 to 0.080%, Zn: 0 to 0.0060%, Pb: 0 to 0.030%, and the balance: Fe and impurities, and that satisfies the formula [MoSS/Mo?0.98] (MoSS: Mo amount dissolved in the steel).
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: June 22, 2021
    Assignee: Nippon Steel Corporation
    Inventors: Masahiro Seto, Masayuki Sagara, Kenta Yamada, Takahiro Osuki
  • Publication number: 20200392611
    Abstract: Provided is an austenitic stainless steel weld joint that is excellent in polythionic acid SCC resistance and naphthenic acid corrosion resistance, and is also excellent in creep ductility. An austenitic stainless steel weld joint includes a base material and a weld metal. The weld metal has a chemical composition at its width-center position and at its thickness-center position consisting of, in mass %, C: 0.050% or less, Si: 0.01 to 1.00%, Mn: 0.01 to 3.00%, P: 0.030% or less, S: 0.015% or less, Cr 15.0 to 25.0%, Ni: 20.0 to 70.0%, Mo: 1.30 to 10.00%, Nb: 0.05 to 3.00%, N: 0.150% or less, and B: 0.0050% or less, with the balance: Fe and impurities.
    Type: Application
    Filed: February 28, 2019
    Publication date: December 17, 2020
    Inventors: Kana JOTOKU, Kenta YAMADA, Hirokazu OKADA, Takahiro OSUKI
  • Publication number: 20200332378
    Abstract: A duplex stainless steel with occurrence of pitting suppressed is provided. A duplex stainless steel according to the present disclosure has a chemical composition consisting of, in mass %, Cr: more than 27.00% to 29.00%, Mo: 2.50 to 3.50%, Ni: 5.00 to 8.00%, W: 4.00 to 6.00%, Cu: 0.01 to less than 0.10%, N: more than 0.400% to 0.600%, C: 0.030% or less, Si: 1.00% or less, Mn 1.00% or less, sol.Al: 0.040% or less, V: 0.50% or less, O: 0.010% or less, P: 0.030% or less, and S: 0.020% or less with the balance being Fe and impurities and satisfying Formula (1), a microstructure consisting of 35 to 65 volume % of ferrite phase with the balance being the austenite phase, and the area fraction of Cu precipitated in the ferrite phase is 0.5% or less. Cr+4.0×Mo+2.0×W+20×N?5×ln(Cu)?65.
    Type: Application
    Filed: November 14, 2018
    Publication date: October 22, 2020
    Inventors: Masayuki SAGARA, Yusaku TOMIO, Takahiro OSUKI, Yusuke UGAWA
  • Patent number: 10662497
    Abstract: A high-strength austenitic stainless steel, which has good hydrogen embrittlement resistance and hydrogen fatigue resistance, has a chemical composition including, in mass %, C: up to 0.10%; Si: up to 1.0%; Mn: not less than 3.0% and less than 7.0 %; Cr: 15 to 30%; Ni: not less than 12.0% and less than 17.0%; Al: up to 0.10%; N: 0.10 to 0.50%; P: up to 0.050%; S: up to 0.050%; at least one of V: 0.01 to 1.0% and Nb: 0.01 to 0.50%; and other elements, the balance being Fe and impurities, wherein the ratio of the minor axis to the major axis of the austenite crystal grains is greater than 0.1, the crystal grain size number of austenite crystal grains is not lower than 8.0, and the tensile strength is not less than 1000 MPa.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: May 26, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Jun Nakamura, Tomohiko Omura, Hiroyuki Hirata, Kana Jotoku, Takahiro Osuki
  • Publication number: 20200157667
    Abstract: An austenitic stainless steel, which consists of by mass percent, C: not more than 0.02%, Si: not more than 1.5%, Mn: not more than 2%, Cr: 17 to 25%, Ni: 9 to 13%, Cu: more than 0.26% not more than 4%, N: 0.06 to 0.35%, sol. Al: 0.008 to 0.03%. One or more elements selected from Nb, Ti, V, TA, Hf, and Zr in controlled amounts can be included with the balance being Fe and impurities. P, S, Sn, As, Zn, Pb and Sb among the impurities are controlled as P: 0.006 to 0.04%, S: 0.0004 to 0.03%, Sn: 0.001 to 0.1%, As: not more than 0.01%, Zn: not more than 0.01%, Pb: not more than 0.01% and Sb: not more than 0.01%. The amounts of S, P, Sn, As, Zn, Pb and Sb and the amounts of Nb, Ta, Zr, Hf, and Ti are further controlled using formulas.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 21, 2020
    Inventors: Takahiro Osuki, Kazuhiro Ogawa, Hiroyuki Hirata, Yoshitaka Nishiyama
  • Publication number: 20200087759
    Abstract: An austenitic alloy material is provided that includes a base metal having a surface, and a film containing chromium oxide having a thickness of 0.1 to 50 ?m on at least one portion of the surface. A chemical composition at a depth position in the film at which the Cr concentration is highest contains, by atom %, 50% or more of Cr as a proportion occupied among components excluding O, C and N. The chemical composition of the base metal consists of, by mass %, C: 0.001 to 0.6%, Si: 0.01 to 5.0%, Mn: 0.1 to 10.0%, P: 0.08% or less, S: 0.05% or less, Cr: 15.0 to 55.0%, Ni: 30.0 to 80.0%, N: 0.001 to 0.25%, O: 0.02% or less, Mo: 0 to 20.0%, Cu: 0 to 5.0%, Co: 0 to 5.0%, W: 0 to 10.0%, Ta: 0 to 6.0%, Nb: 0 to 5.0%, Ti: 0 to 1.0%, B: 0 to 0.1%, Zr: 0 to 0.1%, Hf: 0 to 0.1%, Al: 0 to 1.0%, Mg: 0 to 0.1%, and Ca: 0 to 0.1%, the balance being Fe and impurities.
    Type: Application
    Filed: June 28, 2017
    Publication date: March 19, 2020
    Applicant: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Yasuhiro Masaki, Kiyoko Takeda, Takahiro Osuki
  • Patent number: 10556298
    Abstract: A welded joint having high strength and good hydrogen embrittlement resistance is provided. A welded joint is a welded joint obtained by welding a base material using a welding material. The base material has a chemical composition of, in mass %: C: 0.005 to 0.1%; Si: up to 1.2%; Mn: 2.5 to 6.5%; Ni: 8 to 15%; Cr: 19 to 25%; Mo: 0.01 to 4.5%; V: 0.01 to 0.5%; Nb: 0.01 to 0.5% Al: less than 0.05%; N: 0.15 to 0.45%; O: up to 0.02%; P: up to 0.05%; and S: up to 0.04%, and a balance being iron and impurities, and which satisfies Equation (1). The welding material has a chemical composition which satisfies Equations (1) and (2). Ni+0.65Cr+0.98Mo+1.05Mn+0.35Si+12.6C?29??(1) 0.31C+0.048Si?0.02Mn?0.056Cr+0.007Ni?0.013Mo??1.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: February 11, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kana Jotoku, Hiroyuki Hirata, Tomohiko Omura, Jun Nakamura, Takahiro Osuki
  • Publication number: 20190194787
    Abstract: An objective of the present invention is to provide an austenitic stainless steel that is excellent in polythionic acid SCC resistance and also excellent in creep ductility. An austenitic stainless steel according to the present invention includes a chemical composition consisting of, in mass %, C: 0.030% or less, Si: 0.10 to 1.00%, Mn: 0.20 to 2.00%, P: 0.040% or less, S: 0.010% or less, Cr: 16.0 to 25.0%, Ni: 10.0 to 30.0%, Mo: 0.1 to 5.0%, Nb: 0.20 to 1.00%, N: 0.050 to 0.300%, sol.Al: 0.0005 to 0.100%, and B: 0.0010 to 0.0080%, with the balance being Fe and impurities, and satisfying Formula (1): B+0.004?0.9C+0.017Mo2?0??(1) where symbols of elements in Formula (1) are to be substituted by contents of corresponding elements (mass %).
    Type: Application
    Filed: August 30, 2017
    Publication date: June 27, 2019
    Inventors: Hirokazu Okada, Shinnosuke Kurihara, Etsuo Dan, Masahiro Seto, Takahiro Osuki
  • Publication number: 20190177808
    Abstract: An austenitic stainless steel includes base metal and a coating film formed on at least part of a surface of the base metal, a chemical composition of the base metal containing, in mass percent: C: 0.05% or less; Si: 1.0% or less; Mn: 2.0% or less; P: 0.040% or less; S: 0.010% or less; O: 0.020% or less; N: less than 0.050%; Ni: 12.0 to 27.0%; Cr: 15.0% or more to less than 20.0%; Cu: more than 3.5% to 8.0% or less; Mo: more than 2.0% to 5.0% or less; Co: 0.05% or less; Sn: 0.05% or less, V: 0 to 0.5%, Nb: 0 to 1.0%, Ti: 0 to 0.5%, W: 0 to 5.0%, Zr: 0 to 1.0%, Al: 0 to 0.5%, Ca: 0 to 0.01%, B: 0 to 0.01%, REM: 0 to 0.01%, and the balance: Fe and impurities, wherein a chemical composition at a maximum-Cr depth where a concentration of Cr in the coating film reaches a maximum satisfies, in at %, [(Cr+Ni+Cu+Mo)/Fe?1.0].
    Type: Application
    Filed: August 2, 2017
    Publication date: June 13, 2019
    Applicant: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Shinnosuke KURIHARA, Masayuki SAGARA, Takahiro OSUKI
  • Patent number: 10316383
    Abstract: There is provided an austenitic stainless steel having a high strength and an excellent hydrogen brittleness resistance and further having an excellent machinability. The austenitic stainless steel of the present embodiment has a chemical composition including: in mass %, C: 0.10% or less; Si: 1.0% or less; Mn: 2.1 to 6.0%; P: 0.045% or less; S: 0.1% or less; Ni: 8.0 to 16.0%; Cr: 15.0 to 30.0%; Mo: 1.0 to 5.0%; N: 0.05 to 0.45%; Nb: 0 to 0.50%; and V: 0 to 0.50%, with the balance being Fe and impurities, and satisfying Formula (1). The austenitic stainless steel of the present embodiment has a grain size number of less than 8.0 and a tensile strength of 690 MPa or more. 15?12.6C+1.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: June 11, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Etsuo Dan, Masaaki Terunuma, Takahiro Osuki, Tomohiko Omura, Jun Nakamura
  • Publication number: 20190144981
    Abstract: An austenitic stainless steel is provided which has a chemical composition that consists, by mass %, of: C: 0.015% or less, Si: 1.00% or less, Mn: 2.00% or less, P: 0.05% or less, S: 0.030% or less, Cr: 16.0% or more and less than 22.0%, Ni: 11.0 to 16.0%, Mo: 2.5 to 5.0%, N: 0.07% or more and less than 0.15%, Nb: 0.20 to 0.50%, Al: 0.005 to 0.040%, Sn: 0 to 0.080%, Zn: 0 to 0.0060%, Pb: 0 to 0.030%, and the balance: Fe and impurities, and that satisfies the formula [MoSS/Mo?0.98] (MoSS: Mo amount dissolved in the steel).
    Type: Application
    Filed: April 6, 2017
    Publication date: May 16, 2019
    Inventors: Masahiro Seto, Masayuki Sagara, Kenta Yamada, Takahiro Osuki
  • Publication number: 20190126408
    Abstract: There is provided a welding structure member excellent in corrosion resistance in an environment where high-concentration sulfuric acid condenses, the welding structure member including base material having a chemical composition containing, in mass percent, C?0.05%, Si?1.0%, Mn?2.0%, P?0.04%, S?0.01%, Ni: 12.0 to 27.0%, Cr: 15.0% or more to less than 20.0%, Cu: more than 3 0% to 8.0% or less, Mo: more than 2.0% to 5.0% or less, Nb?1.0%, Ti?0.5%, Co?0.5%, Sn?0.1%, W?5.0%, Zr?1.0%, Al?0.5%, N<0.05%, Ca?0.01%, B?0.01%, and REM?0.01%, with the balance: Fe and unavoidable impurities, and the welding structure member including including weld metal having a chemical composition containing, in mass percent, C?0.10%, Si?0.50%, Mn?3.5%, P?0.03%, S?0.03%, Cu?0.50%, Ni: 51.0 to 69.0%, Cr: 14.5 to 23.0%, Mo: 6.0 to 17.0%, Al?0.40%, Ti+Nb+Ta?4.90%, Co?2.5%, V?0.35%, and W?4.5%, with the balance: Fe and unavoidable impurities.
    Type: Application
    Filed: March 31, 2017
    Publication date: May 2, 2019
    Applicant: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masayuki Sagara, Takahiro Osuki, Shinnosuke Kurihara
  • Publication number: 20190105727
    Abstract: There is provided a welding structure member excellent in corrosion resistance in an environment where high-concentration sulfuric acid condenses, the welding structure member including base material having a chemical composition containing, in mass percent, C?0.05%, Si?1.0%, Mn?2.0%, P?0.04%, S?0.01%, Ni: 12.0 to 27.0%, Cr: 15.0% or more to less than 20.0%, Cu: more than 3.0% to 8.0% or less, Mo: more than 2.0% to 5.0% or less, Nb?1.0%, Ti?0.5%, Co?0.5%, Sn?0.1%, W?5.0%, Zr?1.0%, Al?0.5%, N<0.05%, Ca?0.01%, B?0.01%, and REM?0.01%, with the balance: Fe and unavoidable impurities, and the welding structure member including weld metal having a chemical composition containing, in mass percent, C?0.10%, Si?0.50%, Mn?3.5%, P?0.03%, S?0.03%, Cu?0.50%, Ni: 51.0 to 80.0%, Cr: 14.5 to 23.0%, Mo?0.10%, Al?0.40%, Ti+Nb+Ta?4.90%, Co?2.5%, V?0.35%, and W?4.5%, with the balance: Fe and unavoidable impurities.
    Type: Application
    Filed: March 31, 2017
    Publication date: April 11, 2019
    Inventors: Masayuki Sagara, Takahiro Osuki, Shinnosuke Kurihara
  • Patent number: 10233523
    Abstract: There is provided a carburization resistant metal material suitable as a raw material for cracking furnaces, reforming furnaces, heating furnaces, heat exchangers, etc. in petroleum and gas refining, chemical plants, and the like. This metal material consists of, by mass %, C: 0.03 to 0.075%, Si: 0.6 to 2.0%, Mn: 0.05 to 2.5%, P: 0.04% or less, S: 0.015% or less, Cr: higher than 16.0% and less than 20.0%, Ni: 20.0% or higher and less than 30.0%, Cu: 0.5 to 10.0%, Al: 0.15% or less, Ti: 0.15% or less, N: 0.005 to 0.20%, and O (oxygen): 0.02% or less, the balance being Fe and impurities. The metal material may further contain one kind or more kinds of Co, Mo, W, Ta, B, V, Zr, Nb, Hf, Mg, Ca, Y, La, Ce and Nd.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: March 19, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yoshitaka Nishiyama, Hirokazu Okada, Takahiro Osuki, Etsuo Dan
  • Patent number: 10201880
    Abstract: There is provided a welding material used for welding of SUS310 stainless steel base metal that contains at least one of Nb and V and is excellent in intergranular corrosion resistance, the chemical composition of the welding material consisting, by mass percent, of C: 0.02% or less, Si: 2% or less, Mn: 2% or less, Cr: 26 to 50%, N: 0.15% or less, P: 0.02% or less, S: 0.002% or less, and Ni: a content percentage satisfying [5?Ni?Cr?14], and the balance of Fe and impurities. Also, there is provided a welding joint of an austenitic stainless steel, which consists of the base metal and a weld metal formed by using the welding material.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: February 12, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Takahiro Osuki, Kiyoko Takeda, Tetsuo Yokoyama, Hiroyuki Anada, Masatoshi Toyoda
  • Publication number: 20180258505
    Abstract: An austenitic stainless steel with improved strength, ductility and weldability is provided. An austenitic stainless steel has a chemical composition of, in mass %: 0.005 to 0.07% C; 0.1 to 1.2% Si; 3.2 to 6.5% Mn; 9 to 14% Ni; a total of not less than 0.005% and less than 3% of at least one of Cu and Co; 19 to 24% Cr; 1 to 4% Mo; 0.05 to 0.4% Nb; 0.15 to 0.50% N; up to 0.05% Al; up to 0.03% P; up to 0.002% S; up to 0.02% O; 0 to 0.5% V; 0 to 0.5% Ti; 0 to 0.01% B; 0 to 0.05% Ca; 0 to 0.05% Mg; 0 to 0.5% REM; and the balance being Fe and impurities, where the amount of Nb analyzed as residues after electrolytic extraction is 0.01 to 0.3 mass %.
    Type: Application
    Filed: July 6, 2016
    Publication date: September 13, 2018
    Inventors: Hiroyuki Hirata, Kana Jotoku, Tomohiko Omura, Jun Nakamura, Masaaki Terunuma, Takahiro Osuki, Masaki Ueyama
  • Publication number: 20170314092
    Abstract: A high-strength austenitic stainless steel, which has good hydrogen embrittlement resistance and hydrogen fatigue resistance, has a chemical composition including, in mass %, C: up to 0.10%; Si: up to 1.0%; Mn: not less than 3.0% and less than 7.0 %; Cr: 15 to 30%; Ni: not less than 12.0% and less than 17.0%; Al: up to 0.10%; N: 0.10 to 0.50%; P: up to 0.050%; S: up to 0.050%; at least one of V: 0.01 to 1.0% and Nb: 0.01 to 0.50%; and other elements, the balance being Fe and impurities, wherein the ratio of the minor axis to the major axis of the austenite crystal grains is greater than 0.1, the crystal grain size number of austenite crystal grains is not lower than 8.0, and the tensile strength is not less than 1000 MPa.
    Type: Application
    Filed: October 22, 2015
    Publication date: November 2, 2017
    Applicant: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Jun NAKAMURA, Tomohiko OMURA, Hiroyuki HIRATA, Kana JOTOKU, Takahiro OSUKI
  • Publication number: 20170029911
    Abstract: There is provided an austenitic stainless steel having a high strength and an excellent hydrogen brittleness resistance and further having an excellent machinability. The austenitic stainless steel of the present embodiment has a chemical composition including: in mass %, C: 0.10% or less; Si: 1.0% or less; Mn: 2.1 to 6.0%; P: 0.045% or less; S: 0.1% or less; Ni: 8.0 to 16.0%; Cr: 15.0 to 30.0%; Mo: 1.0 to 5.0%; N: 0.05 to 0.45%; Nb: 0 to 0.50%; and V: 0 to 0.50%, with the balance being Fe and impurities, and satisfying Formula (1). The austenitic stainless steel of the present embodiment has a grain size number of less than 8.0 and a tensile strength of 690 MPa or more. 15?12.6C+1.
    Type: Application
    Filed: April 17, 2015
    Publication date: February 2, 2017
    Inventors: Etsuo DAN, Masaaki TERUNUMA, Takahiro OSUKI, Tomohiko OMURA, Jun NAKAMURA
  • Publication number: 20150010425
    Abstract: An austenitic stainless steel, which consists of by mass percent, C: not more than 0.02%, Si: not more than 1.5%, Mn: not more than 2%, Cr: 17 to 25%, Ni: 9 to 13%, Cu: more than 0.26% not more than 4%, N: 0.06 to 0.35%, sol. Al: 0.008 to 0.03%. One or more elements selected from Nb, Ti, V, TA, Hf, and Zr in controlled amounts can be included with the balance being Fe and impurities. P, S, Sn, As, Zn, Pb and Sb among the impurities are controlled as P: 0.006 to 0.04%, S: 0.0004 to 0.03%, Sn: 0.001 to 0.1%, As: not more than 0.01%, Zn: not more than 0.01%, Pb: not more than 0.01% and Sb: not more than 0.01%. The amounts of S, P, Sn, As, Zn, Pb and Sb and the amounts of Nb, Ta, Zr, Hf, and Ti are further controlled using formulas.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 8, 2015
    Inventors: Takahiro OSUKI, Kazuhiro OGAWA, Hiroyuki HIRARA, Yoshitaka NISHIYAMA