Patents by Inventor Takahito Tanimura
Takahito Tanimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240193434Abstract: A federated learning system using a smart-contract-based blockchain technology is provided. The system includes: a first information processing apparatus including an initial federated learning model; and a second information processing apparatus that trains an initial federated learning model delivered from the first information processing apparatus. The first information processing apparatus includes an initial federated learning model sharing contract that is a smart contract used to share the initial federated learning model with the second information processing apparatus, the smart contract including reward information on a reward as a token that a user of the first information processing apparatus receives from a user of the second information processing apparatus for the sharing of the initial federated learning model.Type: ApplicationFiled: November 17, 2023Publication date: June 13, 2024Inventors: Yuichi KITAGAWA, Masayuki TAKASE, Takahito TANIMURA
-
Patent number: 11742978Abstract: An optical network device includes a receiver that receives a polarization multiplexed optical signal and a processor. The processor separates an electric field information signal indicating the polarization multiplexed optical signal into first and second polarization components orthogonal to each other, generates third and fourth polarization components by controlling the first and second polarization components, calculates an evaluation value corresponding to a power of the third or fourth polarization component for each of a plurality of positions on a transmission line, calculates a variation in the evaluation value for a control amount for each of the plurality of positions, and decides whether a first position is a position to be detected based on a result of comparing a variation in an evaluation value for the first position with a variation in an evaluation value for a second position adjacent to the first position.Type: GrantFiled: December 17, 2021Date of Patent: August 29, 2023Assignee: FUJITSU LIMITEDInventors: Kazuyuki Tajima, Takahito Tanimura, Setsuo Yoshida, Eri Katayama, Kiichi Sugitani
-
Patent number: 11558121Abstract: An optical transmitter includes: a modulator, square law detector, and a processor. The modulator generates an optical signal indicating transmission data. The square law detector detects an intensity of the optical signal using a photodetector and output first intensity data indicating the detected intensity. The processor calculates, based on the transmission data, an electric field of the optical signal generated by the modulator by using parameters pertaining to a state of the modulator. The processor calculates second intensity data indicating the intensity of the optical signal based on the calculated electric field. The processor updates the parameters so as to reduce a difference between the first intensity data and the second intensity data. The processor controls the state of the modulator based on the parameters.Type: GrantFiled: July 1, 2021Date of Patent: January 17, 2023Assignee: FUJITSU LIMITEDInventors: Setsuo Yoshida, Shoichiro Oda, Kazuyuki Tajima, Takeshi Hoshida, Takahito Tanimura
-
Publication number: 20220209884Abstract: An optical network device includes a receiver that receives a polarization multiplexed optical signal and a processor. The processor separates an electric field information signal indicating the polarization multiplexed optical signal into first and second polarization components orthogonal to each other, generates third and fourth polarization components by controlling the first and second polarization components, calculates an evaluation value corresponding to a power of the third or fourth polarization component for each of a plurality of positions on a transmission line, calculates a variation in the evaluation value for a control amount for each of the plurality of positions, and decides whether a first position is a position to be detected based on a result of comparing a variation in an evaluation value for the first position with a variation in an evaluation value for a second position adjacent to the first position.Type: ApplicationFiled: December 17, 2021Publication date: June 30, 2022Applicant: FUJITSU LIMITEDInventors: Kazuyuki TAJIMA, Takahito TANIMURA, Setsuo YOSHIDA, Eri KATAYAMA, Kiichi SUGITANI
-
Publication number: 20220109506Abstract: An optical transmitter includes: a modulator, square law detector, and a processor. The modulator generates an optical signal indicating transmission data. The square law detector detects an intensity of the optical signal using a photodetector and output first intensity data indicating the detected intensity. The processor calculates, based on the transmission data, an electric field of the optical signal generated by the modulator by using parameters pertaining to a state of the modulator. The processor calculates second intensity data indicating the intensity of the optical signal based on the calculated electric field. The processor updates the parameters so as to reduce a difference between the first intensity data and the second intensity data. The processor controls the state of the modulator based on the parameters.Type: ApplicationFiled: July 1, 2021Publication date: April 7, 2022Applicant: FUJITSU LIMITEDInventors: Setsuo Yoshida, Shoichiro Oda, KAZUYUKI TAJIMA, Takeshi Hoshida, Takahito Tanimura
-
Patent number: 11228367Abstract: A communication device used in an optical communication system, the communication device includes a mode change over device configured to switch between a learning mode for learning a normal state of an optical transmission path before operation and a monitoring mode for monitoring a state of the optical transmission path during operation, an anomaly detector configured to detect an anomaly of the optical transmission path using a prediction model determined by the learning mode when the monitoring mode is selected, and a data writer configured to extract waveform data including information related to the anomaly to output the extracted waveform data to an outside when the anomaly is detected.Type: GrantFiled: November 11, 2019Date of Patent: January 18, 2022Assignee: FUJITSU LIMITEDInventors: Takahito Tanimura, Takeshi Hoshida
-
Patent number: 11146332Abstract: A monitoring device includes a processor configured to compensate an electric field signal generated from an optical signal alternately for a chromatic dispersion and a nonlinear distortion in the optical signal in each of virtual sections of a transmission line, evaluate a quality of a compensated electric field signal, select the virtual sections sequentially, set a first compensation quantity of the chromatic dispersion according to a length of each of the virtual sections, search for a third compensation quantity of the nonlinear distortion for a selected virtual section when the quality satisfies a predetermined condition under an assumption that no nonlinear distortion is produced in other virtual sections, search for a second compensation quantity of the nonlinear distortion by setting an initial value of the second compensation quantity to the third compensation quantity, and monitor a power distribution of the optical signal based on the first and second compensation quantities.Type: GrantFiled: January 20, 2021Date of Patent: October 12, 2021Assignee: FUJITSU LIMITEDInventors: Setsuo Yoshida, Takahito Tanimura
-
Publication number: 20210306073Abstract: A monitoring device includes a processor configured to compensate an electric field signal generated from an optical signal alternately for a chromatic dispersion and a nonlinear distortion in the optical signal in each of virtual sections of a transmission line, evaluate a quality of a compensated electric field signal, select the virtual sections sequentially, set a first compensation quantity of the chromatic dispersion according to a length of each of the virtual sections, search for a third compensation quantity of the nonlinear distortion for a selected virtual section when the quality satisfies a predetermined condition under an assumption that no nonlinear distortion is produced in other virtual sections, search for a second compensation quantity of the nonlinear distortion by setting an initial value of the second compensation quantity to the third compensation quantity, and monitor a power distribution of the optical signal based on the first and second compensation quantities.Type: ApplicationFiled: January 20, 2021Publication date: September 30, 2021Applicant: FUJITSU LIMITEDInventors: Setsuo Yoshida, Takahito Tanimura
-
Patent number: 10999659Abstract: An optical network device receives an optical signal, to which polarization information is added, from a transmitter via a transmission line. The receiver generates electric-field-information signal of the optical signal. The processor acquires, for respective polarization rotation amounts, the electric-field-information signal during a period specified by the polarization information. The processor calculates, for respective polarization rotation amounts and based on the electric-field-information signal, evaluation values corresponding to powers of the optical signal at a plurality of positions on the transmission line. The processor calculates, for respective positions, variations in the evaluation values corresponding to the polarization rotation amounts.Type: GrantFiled: July 24, 2020Date of Patent: May 4, 2021Assignee: FUJITSU LIMITEDInventors: Kazuyuki Tajima, Takahito Tanimura, Setsuo Yoshida, Takeshi Hoshida
-
Patent number: 10972178Abstract: A parameter analysis method executable by a computer, the method includes training a model configured to output an index value relating to a characteristic of an optical signal, and changing the characteristic of the optical signal usable for training the model.Type: GrantFiled: March 4, 2019Date of Patent: April 6, 2021Assignee: FUJITSU LIMITEDInventor: Takahito Tanimura
-
Publication number: 20210092498Abstract: An optical network device receives an optical signal, to which polarization information is added, from a transmitter via a transmission line. The receiver generates electric-field-information signal of the optical signal. The processor acquires, for respective polarization rotation amounts, the electric-field-information signal during a period specified by the polarization information. The processor calculates, for respective polarization rotation amounts and based on the electric-field-information signal, evaluation values corresponding to powers of the optical signal at a plurality of positions on the transmission line. The processor calculates, for respective positions, variations in the evaluation values corresponding to the polarization rotation amounts.Type: ApplicationFiled: July 24, 2020Publication date: March 25, 2021Applicant: FUJITSU LIMITEDInventors: KAZUYUKI TAJIMA, Takahito Tanimura, Setsuo Yoshida, Takeshi Hoshida
-
Patent number: 10853719Abstract: A data collecting device includes a receiver configured to receive an optical signal; an optical-to-electrical converter configured to convert the optical signal received by the receiver into an electrical signal; an analog-to-digital converter configured to convert the electrical signal into a digital signal; a data reducing circuit configured to reduce the digital signal output from the analog-to-digital converter; and a transmitter configured to transmit, to a managing device that manages the data collecting device, a signal obtained by reducing the digital signal by the data reducing circuit.Type: GrantFiled: December 2, 2016Date of Patent: December 1, 2020Assignee: FUJITSU LIMITEDInventors: Takahito Tanimura, Takeshi Hoshida
-
Patent number: 10720992Abstract: There is provided a transmission apparatus including a transmitter configured to modulate a signal to a first signal having a first wavelength and a signal to a second signal having a second wavelength, and transmit the first signal and the second signal to a transmission line so that the second signal is varied in accordance with variation in an amount of cross phase modulation of the first signal passing through each position on the transmission line, and a signal processor configured to include at least one of a logic device and a processor, and configured to add an amount of chromatic dispersion at which a remaining amount of chromatic dispersion of the first wavelength at a certain position on the transmission line is equal to zero to the first wavelength in the transmission of the first signal and the second signal.Type: GrantFiled: June 19, 2018Date of Patent: July 21, 2020Assignee: FUJITSU LIMITEDInventors: Takahito Tanimura, Takeshi Hoshida, Shigeki Watanabe, Tomoyuki Kato
-
Publication number: 20200153504Abstract: A communication device used in an optical communication system, the communication device includes a mode change over device configured to switch between a learning mode for learning a normal state of an optical transmission path before operation and a monitoring mode for monitoring a state of the optical transmission path during operation, an anomaly detector configured to detect an anomaly of the optical transmission path using a prediction model determined by the learning mode when the monitoring mode is selected, and a data writer configured to extract waveform data including information related to the anomaly to output the extracted waveform data to an outside when the anomaly is detected.Type: ApplicationFiled: November 11, 2019Publication date: May 14, 2020Applicant: FUJITSU LIMITEDInventors: Takahito Tanimura, Takeshi Hoshida
-
Patent number: 10554325Abstract: A transmitter transmitting a polarization multiplexed optical signal, includes: a light source; a generating unit configured to split a light of the light source into first and second polarized lights, optically modulate the first and second polarized lights based on an electric data signal, and multiplex the first polarized light optically-modulated and the second polarized light optically-modulated to generate the polarization multiplexed optical signal; and a coupling unit configured to couple a first reference light having a frequency different from a frequency of the light of the light source with the first polarized light and couple a second reference light having a frequency different from the frequency of the light of the light source with the second polarized light, wherein the first reference light and the second reference light have different frequencies.Type: GrantFiled: August 30, 2018Date of Patent: February 4, 2020Assignee: FUJITSU LIMITEDInventors: Tomohiro Yamauchi, Takahito Tanimura, Takeshi Hoshida, Rafael Puerta Ramirez
-
Patent number: 10425166Abstract: An optical transmitter includes, an optical modulator that multilevel-modulates light outputted from a light source, and a processor that outputs a first drive voltage for driving the optical modulator according to an amplitude component when transmission data is symbol-mapped and a second drive voltage for driving the optical modulator according to a phase component when the transmission data is symbol-mapped. A phase shift of phase modulation by the second drive voltage outputted from the processor is greater than 0 and less than ?/2.Type: GrantFiled: July 9, 2018Date of Patent: September 24, 2019Assignee: FUJITSU LIMITEDInventors: Tomohiro Yamauchi, Tomofumi Oyama, Takahito Tanimura, Guoxiu Huang, Takeshi Hoshida
-
Patent number: 10419117Abstract: There is provided a monitor device for monitoring a transmission line including a memory, and a processor coupled to the memory and configured to compensate for a portion of chromatic dispersion on electric signals indicating an electric field component of an optical signal, compensate for deterioration due to a nonlinear optical effect on the electric signals on which the portion of chromatic dispersion is compensated, compensate for a remaining chromatic dispersion except for the portion of chromatic dispersion on the electric signals on which the deterioration due to the nonlinear optical effect is compensated, evaluate quality of the electric signals on which remaining chromatic dispersion except for the portion of chromatic dispersion are compensated, and acquire a first compensation amount of the portion of chromatic dispersion and a second compensation amount of the deterioration due to the nonlinear optical effect, when the evaluated quality satisfies a predetermined condition.Type: GrantFiled: February 14, 2018Date of Patent: September 17, 2019Assignee: FUJITSU LIMITEDInventors: Takahito Tanimura, Takeshi Hoshida
-
Publication number: 20190280766Abstract: A parameter analysis method executable by a computer, the method includes training a model configured to output an index value relating to a characteristic of an optical signal, and changing the characteristic of the optical signal usable for training the model.Type: ApplicationFiled: March 4, 2019Publication date: September 12, 2019Applicant: FUJITSU LIMITEDInventor: Takahito Tanimura
-
Patent number: 10313017Abstract: An optical transmitter includes: a light source configured to generate CW light; a drive signal generator configured to generate a drive signal; an optical modulator configured to modulate the CW light with the drive signal so as to generate a first optical signal; a combiner configured to combine the first optical signal and a second optical signal generated by using another light source; and a detector configured to detect a frequency difference between a frequency of the CW light and a center frequency of the second optical signal. The drive signal generator includes: a mapper configured to generate an electric field information signal based on input data; and a frequency controller configured to modify the electric field information signal based on the frequency difference such that the frequency of the CW light matches the center frequency of the second optical signal to generate the drive signal.Type: GrantFiled: July 10, 2017Date of Patent: June 4, 2019Assignee: FUJITSU LIMITEDInventors: Takahito Tanimura, Takeshi Hoshida
-
Patent number: 10277328Abstract: A signal processing device processes an electric field information signal indicating a polarization multiplexed optical signal in which different modulation formats are used. A first optical signal transmitted in a first polarization component and a second optical signal transmitted in a second polarization component are multiplexed in the polarization multiplexed optical signal. The signal processing device includes a generator and a compensation circuit. The generator selects the first polarization component or the second polarization component based on modulation formats of the first and second optical signals, and generates a compensation value for compensating for an electric field information signal of a selected polarization component based on the electric field information signal of the selected polarization component. The compensation circuit compensates for electric field information signals of the first and second polarization components using the compensation value generated by the generator.Type: GrantFiled: June 29, 2017Date of Patent: April 30, 2019Assignee: FUJITSU LIMITEDInventors: Tomofumi Oyama, Hisao Nakashima, Yoshitaka Nomura, Takeshi Hoshida, Takahito Tanimura