Patents by Inventor Takako Suematsu

Takako Suematsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10451695
    Abstract: There is disclosed an NMR signal processing method for accurately estimating the intensities of p peaks of interest in an NMR spectrum by the use of a mathematical model that represents a time-domain, free induction decay (FID) signal obtained by an NMR measurement as a sum of q signal components. First, q parameters (each being a combination of a pole and a complex intensity) defining q signal components are estimated for each value of the estimation order q of the mathematical model while varying the value of the estimation order q (S34). At each value of the estimation order q, p parameters are selected from the q parameters in accordance with selection criteria (S42, S46). The selected p parameters are evaluated (S48). An optimal value of the estimation order is determined based on the evaluation values produced at the various values of the estimation order q, and p parameters corresponding to the optimal value of the estimation order is identified.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: October 22, 2019
    Assignee: JEOL Ltd.
    Inventors: Takako Suematsu, Hiroaki Utsumi, Tomoki Nakao, Toshihiro Furukawa
  • Publication number: 20150057979
    Abstract: There is disclosed an NMR signal processing method for accurately estimating the intensities of p peaks of interest in an NMR spectrum by the use of a mathematical model that represents a time-domain, free induction decay (FID) signal obtained by an NMR measurement as a sum of q signal components. First, q parameters (each being a combination of a pole and a complex intensity) defining q signal components are estimated for each value of the estimation order q of the mathematical model while varying the value of the estimation order q (S34). At each value of the estimation order q, p parameters are selected from the q parameters in accordance with selection criteria (S42, S46). The selected p parameters are evaluated (S48). An optimal value of the estimation order is determined based on the evaluation values produced at the various values of the estimation order q, and p parameters corresponding to the optimal value of the estimation order is identified.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 26, 2015
    Inventors: Takako Suematsu, Hiroaki Utsumi, Tomoki Nakao, Toshihiro Furukawa