Patents by Inventor Takako Yada

Takako Yada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11345897
    Abstract: The present invention provides a microorganism-derived soluble coenzyme-binding glucose dehydrogenase which catalyzes a reaction for oxidizing glucose in the presence of an electron acceptor, has an activity to maltose as low as 5% or less, and is inhibited by 1,10-phenanthroline. The invention also provides a method for producing the coenzyme-binding glucose dehydrogenase, and a method and a reagent for measuring employing the coenzyme-binding glucose dehydrogenase. According to the invention, the coenzyme-binding glucose dehydrogenase can be applied to an industrial field, and a use becomes possible also in a material production or analysis including a method for measuring or eliminating glucose in a sample using the coenzyme-binding glucose dehydrogenase as well as a method for producing an organic compound. It became also possible to provide a glucose sensor capable of accurately measuring a blood sugar level.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: May 31, 2022
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Tetsunari Morita, Mika Kuyama, Tokuji Ikeda, Kenji Kano, Seiya Tsujimura
  • Patent number: 11225645
    Abstract: The present invention provides a microorganism-derived soluble coenzyme-binding glucose dehydrogenase which catalyzes a reaction for oxidizing glucose in the presence of an electron acceptor, has an activity to maltose as low as 5% or less, and is inhibited by 1,10-phenanthroline. The invention also provides a method for producing the coenzyme-binding glucose dehydrogenase, and a method and a reagent for measuring employing the coenzyme-binding glucose dehydrogenase, According to the invention, the coenzyme-binding glucose dehydrogenase can be applied to an industrial field, and a use becomes possible also in a material production or analysis including a method for measuring or eliminating glucose in a sample using the coenzyme-binding glucose dehydrogenase as well as a method for producing an organic compound. It became also possible to provide a glucose sensor capable of accurately measuring a blood sugar level.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: January 18, 2022
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Tetsunari Morita, Mika Kuyama, Tokuji Ikeda, Kenji Kano, Seiya Tsujimura
  • Patent number: 11155789
    Abstract: The present invention provides a microorganism-derived soluble coenzyme-binding glucose dehydrogenase which catalyzes a reaction for oxidizing glucose in the presence of an electron acceptor, has an activity to maltose as low as 5% or less, and is inhibited by 1,10-phenanthroline. The invention also provides a method for producing the coenzyme-binding glucose dehydrogenase, and a method and a reagent for measuring employing the coenzyme-binding glucose dehydrogenase. According to the invention, the coenzyme-binding glucose dehydrogenase can be applied to an industrial field, and a use becomes possible also in a material production or analysis including a method for measuring or eliminating glucose in a sample using the coenzyme-binding glucose dehydrogenase as well as a method for producing an organic compound. It became also possible to provide a glucose sensor capable of accurately measuring a blood sugar level.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: October 26, 2021
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Tetsunari Morita, Mika Kuyama, Tokuji Ikeda, Kenji Kano, Seiya Tsujimura
  • Patent number: 10988738
    Abstract: The present invention provides a microorganism-derived soluble coenzyme-binding glucose dehydrogenase which catalyzes a reaction for oxidizing glucose in the presence of an electron acceptor, has an activity to maltose as low as 5% or less, and is inhibited by 1,10-phenanthroline. The invention also provides a method for producing the coenzyme-binding glucose dehydrogenase, and a method and a reagent for measuring employing the coenzyme-binding glucose dehydrogenase. According to the invention, the coenzyme-binding glucose dehydrogenase can be applied to an industrial field, and a use becomes possible also in a material production or analysis including a method for measuring or eliminating glucose in a sample using the coenzyme-binding glucose dehydrogenase as well as a method for producing an organic compound. It became also possible to provide a glucose sensor capable of accurately measuring a blood sugar level.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: April 27, 2021
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Tetsunari Morita, Mika Kuyama, Tokuji Ikeda, Kenji Kano, Seiya Tsujimura
  • Patent number: 10883133
    Abstract: The present invention provides members that produce on a large scale a coenzyme-linked glucose dehydrogenase which has excellent substrate-recognizing ability toward glucose while providing low action on maltose. The present invention relates to a polynucleotide encoding a soluble coenzyme-linked glucose dehydrogenase that catalyzes the oxidation of glucose in the presence of an electron acceptor and has an activity toward maltose of 5% or lower; a polypeptide encoded by the nucleotide sequence of the polynucleotide; a recombinant vector carrying the polynucleotide; a transformed cell produced using the recombinant vector; a method for producing a polypeptide comprising culturing the transformed cell and collecting from the cultivated products a polypeptide that links to FAD to exert the glucose dehydration activity; a method for determination of glucose using the polypeptide; a reagent composition for determination of glucose; and a biosensor.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 5, 2021
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Ayaka Atsumi, Tetsunari Morita, Emi Ishimaru
  • Patent number: 10851398
    Abstract: The present invention provides members that produce on a large scale a coenzyme-linked glucose dehydrogenase which has excellent substrate-recognizing ability toward glucose while providing low action on maltose. The present invention relates to a polynucleotide encoding a soluble coenzyme-linked glucose dehydrogenase that catalyzes the oxidation of glucose in the presence of an electron acceptor and has an activity toward maltose of 5% or lower; a polypeptide encoded by the nucleotide sequence of the polynucleotide; a recombinant vector carrying the polynucleotide; a transformed cell produced using the recombinant vector; a method for producing a polypeptide comprising culturing the transformed cell and collecting from the cultivated products a polypeptide that links to FAD to exert the glucose dehydration activity; a method for determination of glucose using the polypeptide; a reagent composition for determination of glucose; and a biosensor.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: December 1, 2020
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Ayaka Atsumi, Tetsunari Morita, Emi Ishimaru
  • Patent number: 10815515
    Abstract: The present invention provides members that produce on a large scale a coenzyme-linked glucose dehydrogenase which has excellent substrate-recognizing ability toward glucose while providing low action on maltose. The present invention relates to a polynucleotide encoding a soluble coenzyme-linked glucose dehydrogenase that catalyzes the oxidation of glucose in the presence of an electron acceptor and has an activity toward maltose of 5% or lower; a polypeptide encoded by the nucleotide sequence of the polynucleotide; a recombinant vector carrying the polynucleotide; a transformed cell produced using the recombinant vector; a method for producing a polypeptide comprising culturing the transformed cell and collecting from the cultivated products a polypeptide that links to FAD to exert the glucose dehydration activity; a method for determination of glucose using the polypeptide; a reagent composition for determination of glucose; and a biosensor.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 27, 2020
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Ayaka Atsumi, Tetsunari Morita, Emi Ishimaru
  • Patent number: 10808274
    Abstract: The present invention provides members that produce on a large scale a coenzyme-linked glucose dehydrogenase which has excellent substrate-recognizing ability toward glucose while providing low action on maltose. The present invention relates to a polynucleotide encoding a soluble coenzyme-linked glucose dehydrogenase that catalyzes the oxidation of glucose in the presence of an electron acceptor and has an activity toward maltose of 5% or lower; a polypeptide encoded by the nucleotide sequence of the polynucleotide; a recombinant vector carrying the polynucleotide; a transformed cell produced using the recombinant vector; a method for producing a polypeptide comprising culturing the transformed cell and collecting from the cultivated products a polypeptide that links to FAD to exert the glucose dehydration activity; a method for determination of glucose using the polypeptide; a reagent composition for determination of glucose; and a biosensor.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: October 20, 2020
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Ayaka Atsumi, Tetsunari Morita, Emi Ishimaru
  • Patent number: 10738341
    Abstract: The present invention provides members that produce on a large scale a coenzyme-linked glucose dehydrogenase which has excellent substrate-recognizing ability toward glucose while providing low action on maltose. The present invention relates to a polynucleotide encoding a soluble coenzyme-linked glucose dehydrogenase that catalyzes the oxidation of glucose in the presence of an electron acceptor and has an activity toward maltose of 5% or lower; a polypeptide encoded by the nucleotide sequence of the polynucleotide; a recombinant vector carrying the polynucleotide; a transformed cell produced using the recombinant vector; a method for producing a polypeptide comprising culturing the transformed cell and collecting from the cultivated products a polypeptide that links to FAD to exert the glucose dehydration activity; a method for determination of glucose using the polypeptide; a reagent composition for determination of glucose; and a biosensor.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: August 11, 2020
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Ayaka Atsumi, Tetsunari Morita, Emi Ishimaru
  • Patent number: 10669565
    Abstract: The present invention provides members that produce on a large scale a coenzyme-linked glucose dehydrogenase which has excellent substrate-recognizing ability toward glucose while providing low action on maltose. The present invention relates to a polynucleotide encoding a soluble coenzyme-linked glucose dehydrogenase that catalyzes the oxidation of glucose in the presence of an electron acceptor and has an activity toward maltose of 5% or lower; a polypeptide encoded by the nucleotide sequence of the polynucleotide; a recombinant vector carrying the polynucleotide; a transformed cell produced using the recombinant vector; a method for producing a polypeptide comprising culturing the transformed cell and collecting from the cultivated products a polypeptide that links to FAD to exert the glucose dehydration activity; a method for determination of glucose using the polypeptide; a reagent composition for determination of glucose; and a biosensor.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: June 2, 2020
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Ayaka Atsumi, Tetsunari Morita, Emi Ishimaru
  • Patent number: 10648011
    Abstract: The present invention provides members that produce on a large scale a coenzyme-linked glucose dehydrogenase which has excellent substrate-recognizing ability toward glucose while providing low action on maltose. The present invention relates to a polynucleotide encoding a soluble coenzyme-linked glucose dehydrogenase that catalyzes the oxidation of glucose in the presence of an electron acceptor and has an activity toward maltose of 5% or lower; a polypeptide encoded by the nucleotide sequence of the polynucleotide; a recombinant vector carrying the polynucleotide; a transformed cell produced using the recombinant vector; a method for producing a polypeptide comprising culturing the transformed cell and collecting from the cultivated products a polypeptide that links to FAD to exert the glucose dehydration activity; a method for determination of glucose using the polypeptide; a reagent composition for determination of glucose; and a biosensor.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: May 12, 2020
    Assignees: Ikeda Food Research Co., ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Ayaka Atsumi, Tetsunari Morita, Emi Ishimaru
  • Patent number: 10626434
    Abstract: The present invention provides members that produce on a large scale a coenzyme-linked glucose dehydrogenase which has excellent substrate-recognizing ability toward glucose while providing low action on maltose. The present invention relates to a polynucleotide encoding a soluble coenzyme-linked glucose dehydrogenase that catalyzes the oxidation of glucose in the presence of an electron acceptor and has an activity toward maltose of 5% or lower; a polypeptide encoded by the nucleotide sequence of the polynucleotide; a recombinant vector carrying the polynucleotide; a transformed cell produced using the recombinant vector; a method for producing a polypeptide comprising culturing the transformed cell and collecting from the cultivated products a polypeptide that links to FAD to exert the glucose dehydration activity; a method for determination of glucose using the polypeptide; a reagent composition for determination of glucose; and a biosensor.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: April 21, 2020
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Ayaka Atsumi, Tetsunari Morita, Emi Ishimaru
  • Patent number: 10626433
    Abstract: The present invention provides members that produce on a large scale a coenzyme-linked glucose dehydrogenase which has excellent substrate-recognizing ability toward glucose while providing low action on maltose. The present invention relates to a polynucleotide encoding a soluble coenzyme-linked glucose dehydrogenase that catalyzes the oxidation of glucose in the presence of an electron acceptor and has an activity toward maltose of 5% or lower; a polypeptide encoded by the nucleotide sequence of the polynucleotide; a recombinant vector carrying the polynucleotide; a transformed cell produced using the recombinant vector; a method for producing a polypeptide comprising culturing the transformed cell and collecting from the cultivated products a polypeptide that links to FAD to exert the glucose dehydration activity; a method for determination of glucose using the polypeptide; a reagent composition for determination of glucose; and a biosensor.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: April 21, 2020
    Assignees: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanada, Takako Yada, Ayaka Atsumi, Tetsunari Morita, Emi Ishimaru
  • Publication number: 20190177701
    Abstract: The present invention provides a microorganism-derived soluble coenzyme-binding glucose dehydrogenase which catalyzes a reaction for oxidizing glucose in the presence of an electron acceptor, has an activity to maltose as low as 5% or less, and is inhibited by 1,10-phenanthroline. The invention also provides a method for producing the coenzyme-binding glucose dehydrogenase, and a method and a reagent for measuring employing the coenzyme-binding glucose dehydrogenase. According to the invention, the coenzyme-binding glucose dehydrogenase can be applied to an industrial field, and a use becomes possible also in a material production or analysis including a method for measuring or eliminating glucose in a sample using the coenzyme-binding glucose dehydrogenase as well as a method for producing an organic compound. It became also possible to provide a glucose sensor capable of accurately measuring a blood sugar level.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Applicants: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanda, Takako Yada, Tetsunari Morita, Mika Kuyama, Tokuji Ikeda, Kenji Kano, Seiya Tsujimura
  • Publication number: 20190177699
    Abstract: The present invention provides a microorganism-derived soluble coenzyme-binding glucose dehydrogenase which catalyzes a reaction for oxidizing glucose in the presence of an electron acceptor, has an activity to maltose as low as 5% or less, and is inhibited by 1,10-phenanthroline. The invention also provides a method for producing the coenzyme-binding glucose dehydrogenase, and a method and a reagent for measuring employing the coenzyme-binding glucose dehydrogenase. According to the invention, the coenzyme-binding glucose dehydrogenase can be applied to an industrial field, and a use becomes possible also in a material production or analysis including a method for measuring or eliminating glucose in a sample using the coenzyme-binding glucose dehydrogenase as well as a method for producing an organic compound. It became also possible to provide a glucose sensor capable of accurately measuring a blood sugar level.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Applicants: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori OMURA, Hirokazu SANDA, Takako YADA, Tetsunari MORITA, Mika KUYAMA, Tokuji IKEDA, Kenji KANO, Seiya TSUJIMURA
  • Publication number: 20190177762
    Abstract: The present invention provides members that produce on a large scale a coenzyme-linked glucose dehydrogenase which has excellent substrate-recognizing ability toward glucose while providing low action on maltose. The present invention relates to a polynucleotide encoding a soluble coenzyme-linked glucose dehydrogenase that catalyzes the oxidation of glucose in the presence of an electron acceptor and has an activity toward maltose of 5% or lower; a polypeptide encoded by the nucleotide sequence of the polynucleotide; a recombinant vector carrying the polynucleotide; a transformed cell produced using the recombinant vector; a method for producing a polypeptide comprising culturing the transformed cell and collecting from the cultivated products a polypeptide that links to FAD to exert the glucose dehydration activity; a method for determination of glucose using the polypeptide; a reagent composition for determination of glucose; and a biosensor.
    Type: Application
    Filed: March 21, 2018
    Publication date: June 13, 2019
    Applicants: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori OMURA, Hirokazu SANADA, Takako YADA, Ayaka ATSUMI, Tetsunari MORITA, Emi ISHIMARU
  • Publication number: 20190177700
    Abstract: The present invention provides a microorganism-derived soluble coenzyme-binding glucose dehydrogenase which catalyzes a reaction for oxidizing glucose in the presence of an electron acceptor, has an activity to maltose as low as 5% or less, and is inhibited by 1,10-phenanthroline. The invention also provides a method for producing the coenzyme-binding glucose dehydrogenase, and a method and a reagent for measuring employing the coenzyme-binding glucose dehydrogenase. According to the invention, the coenzyme-binding glucose dehydrogenase can be applied to an industrial field, and a use becomes possible also in a material production or analysis including a method for measuring or eliminating glucose in a sample using the coenzyme-binding glucose dehydrogenase as well as a method for producing an organic compound. It became also possible to provide a glucose sensor capable of accurately measuring a blood sugar level.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Applicants: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori OMURA, Hirokazu SANDA, Takako YADA, Tetsunari MORITA, Mika KUYAMA, Tokuji IKEDA, Kenji KANO, Seiya TSUJIMURA
  • Publication number: 20190177761
    Abstract: The present invention provides members that produce on a large scale a coenzyme-linked glucose dehydrogenase which has excellent substrate-recognizing ability toward glucose while providing low action on maltose. The present invention relates to a polynucleotide encoding a soluble coenzyme-linked glucose dehydrogenase that catalyzes the oxidation of glucose in the presence of an electron acceptor and has an activity toward maltose of 5% or lower; a polypeptide encoded by the nucleotide sequence of the polynucleotide; a recombinant vector carrying the polynucleotide; a transformed cell produced using the recombinant vector; a method for producing a polypeptide comprising culturing the transformed cell and collecting from the cultivated products a polypeptide that links to FAD to exert the glucose dehydration activity; a method for determination of glucose using the polypeptide; a reagent composition for determination of glucose; and a biosensor.
    Type: Application
    Filed: March 21, 2018
    Publication date: June 13, 2019
    Applicants: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori OMURA, Hirokazu SANADA, Takako YADA, Ayaka ATSUMI, Tetsunari MORITA, Emi ISHIMARU
  • Publication number: 20190177698
    Abstract: The present invention provides a microorganism-derived soluble coenzyme-binding glucose dehydrogenase which catalyzes a reaction for oxidizing glucose in the presence of an electron acceptor, has an activity to maltose as low as 5% or less, and is inhibited by 1,10-phenanthroline. The invention also provides a method for producing the coenzyme-binding glucose dehydrogenase, and a method and a reagent for measuring employing the coenzyme-binding glucose dehydrogenase. According to the invention, the coenzyme-binding glucose dehydrogenase can be applied to an industrial field, and a use becomes possible also in a material production or analysis including a method for measuring or eliminating glucose in a sample using the coenzyme-binding glucose dehydrogenase as well as a method for producing an organic compound. It became also possible to provide a glucose sensor capable of accurately measuring a blood sugar level.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Applicants: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori Omura, Hirokazu Sanda, Takako Yada, Tetsunari Morita, Mika Kuyama, Tokuji Ikeda, Kenji Kano, Seiya Tsujimura
  • Publication number: 20190177763
    Abstract: The present invention provides members that produce on a large scale a coenzyme-linked glucose dehydrogenase which has excellent substrate-recognizing ability toward glucose while providing low action on maltose. The present invention relates to a polynucleotide encoding a soluble coenzyme-linked glucose dehydrogenase that catalyzes the oxidation of glucose in the presence of an electron acceptor and has an activity toward maltose of 5% or lower; a polypeptide encoded by the nucleotide sequence of the polynucleotide; a recombinant vector carrying the polynucleotide; a transformed cell produced using the recombinant vector; a method for producing a polypeptide comprising culturing the transformed cell and collecting from the cultivated products a polypeptide that links to FAD to exert the glucose dehydration activity; a method for determination of glucose using the polypeptide; a reagent composition for determination of glucose; and a biosensor.
    Type: Application
    Filed: March 21, 2018
    Publication date: June 13, 2019
    Applicants: Ikeda Food Research Co., Ltd., PHC Corporation
    Inventors: Hironori OMURA, Hirokazu SANADA, Takako YADA, Ayaka ATSUMI, Tetsunari MORITA, Emi ISHIMARU