Patents by Inventor Takamasa Kanie

Takamasa Kanie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10511036
    Abstract: A channel forming body used in a fuel cell module has a gas channel, a water conduit, and a communication path that provides communication between the gas channel and the water conduit. When a ridge is seen in a cross-section perpendicular to a channel extension direction, one of both ends of an external shape of the ridge is shaped so as to be located closer to a center of the ridge than an imaginary surface of the channel assumed to extend in a straight line along the channel extension direction. Portions of the ridge located closer to the center of the ridge are formed opposite from each other at left and right ends of the external shape of the ridge with the communication path interposed therebetween.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: December 17, 2019
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Hiroya Nakaji, Kazunori Shibata, Hiroki Okabe, Kousuke Kawajiri, Satoshi Futami, Keiji Hashimoto, Takamasa Kanie
  • Patent number: 10181607
    Abstract: A gas flow passage-forming member is disposed between a membrane electrode and gas diffusion layer assembly and a separator of a fuel cell, and the gas flow passage-forming member is configured to form a gas flow passage. The gas flow passage-forming member has a corrugated shape such that groove portions and ridge portions are provided on each of a front side and a back side of the gas flow passage-forming member. The groove portions each serve as the gas flow passage. The gas flow passage-forming member has communication holes providing communication between the front side and the back side, and the communication holes are provided in a region downstream of an upstream region in a gas flow direction. The upstream region is a non-communication region with no communication hole.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: January 15, 2019
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyota Shatai Kabushiki Kaisha
    Inventors: Kazunori Shibata, Hiroya Nakaji, Hiroki Okabe, Yoshinori Shinozaki, Kousuke Kawajiri, Satoshi Futami, Takamasa Kanie
  • Patent number: 10109868
    Abstract: A gas channel forming plate includes protrusions, which extend parallel with each other, gas channels that are respectively located between each adjacent pair of the protrusions, and water channels, which are respectively formed on the back surface of each protrusion. Each protrusion includes first communication portions and second communication portions. Each first communication portion includes a first opening. Each second communication portion includes a second opening. The second communication portions of each protrusion constitute an expanding region, in which the opening area of the second opening in each second communication portion is greater than the opening area of the first opening of each first communication portion, to limit introduction of water to the water channel on the back side of the protrusion using capillary action by the second communication portions.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: October 23, 2018
    Assignees: Toyota Shatai Kabushiki Kaisha, Toyota Jidosha Kabushiki Kaisha
    Inventors: Kousuke Kawajiri, Satoshi Futami, Yuki Sugino, Takamasa Kanie, Hiroki Okabe, Kazunori Shibata
  • Publication number: 20180034079
    Abstract: A gas flow passage-forming member is disposed between a membrane electrode and gas diffusion layer assembly and a separator of a fuel cell, and the gas flow passage-forming member is configured to form a gas flow passage. The gas flow passage-forming member has a corrugated shape such that groove portions and ridge portions are provided on each of a front side and a back side of the gas flow passage-forming member. The groove portions each serve as the gas flow passage. The gas flow passage-forming member has communication holes providing communication between the front side and the back side, and the communication holes are provided in a region downstream of an upstream region in a gas flow direction. The upstream region is a non-communication region with no communication hole.
    Type: Application
    Filed: July 26, 2017
    Publication date: February 1, 2018
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, TOYOTA SHATAI KABUSHIKI KAISHA
    Inventors: Kazunori SHIBATA, Hiroya NAKAJI, Hiroki OKABE, Yoshinori SHINOZAKI, Kousuke KAWAJIRI, Satoshi FUTAMI, Takamasa KANIE
  • Publication number: 20170331123
    Abstract: A channel forming body used in a fuel cell module has a gas channel, a water conduit, and a communication path that provides communication between the gas channel and the water conduit. When a ridge is seen in a cross-section perpendicular to a channel extension direction, one of both ends of an external shape of the ridge is shaped so as to be located closer to a center of the ridge than an imaginary surface of the channel assumed to extend in a straight line along the channel extension direction. Portions of the ridge located closer to the center of the ridge are formed opposite from each other at left and right ends of the external shape of the ridge with the communication path interposed therebetween.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 16, 2017
    Inventors: Hiroya Nakaji, Kazunori Shibata, Hiroki Okabe, Kousuke Kawajiri, Satoshi Futami, Keiji Hashimoto, Takamasa Kanie
  • Publication number: 20170054156
    Abstract: A gas channel forming plate includes protrusions, which extend parallel with each other, gas channels that are respectively located between each adjacent pair of the protrusions, and water channels, which are respectively formed on the back surface of each protrusion. Each protrusion includes first communication portions and second communication portions. Each first communication portion includes a first opening. Each second communication portion includes a second opening. The second communication portions of each protrusion constitute an expanding region, in which the opening area of the second opening in each second communication portion is greater than the opening area of the first opening of each first communication portion, to limit introduction of water to the water channel on the back side of the protrusion using capillary action by the second communication portions.
    Type: Application
    Filed: August 3, 2016
    Publication date: February 23, 2017
    Applicants: TOYOTA SHATAI KABUSHIKI KAISHA, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kousuke Kawajiri, Satoshi Futami, Yuki Sugino, Takamasa Kanie, Hiroki Okabe, Kazunori Shibata
  • Patent number: 9160020
    Abstract: An electrode structure 15 is received in a joint portion of frames 13, 14. A first gas diffusion layer 19 and a first gas passage forming member 21 are arranged on a first surface of the electrode structure 15. A second gas diffusion layer 20 and a second gas passage forming member 22 are formed on a second surface of the electrode structure 15. A separator 23 is joined with a surface of the frame 13 and a surface of the gas passage forming member 21. A separator 24 is joined with a surface of the frame 14 and a surface of the gas passage forming member 22. A water passage 28 is formed between a flat plate 25 of the gas passage forming member 22 and the separator 24. The water passage 28 has a depth set to a value smaller than depth of a gas passage T2 of the gas passage forming member 22. Generated water is introduced from the gas passage T2 of the gas passage forming member 22 to the water passage 28 through capillary action via communication holes 29.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: October 13, 2015
    Assignees: Toyota Shatai Kabushiki Kaisha, Toyota Jidosha Kabushiki Kiasha
    Inventors: Kousuke Kawajiri, Keiji Hashimoto, Satoshi Futami, Takamasa Kanie, Kazunari Moteki, Tomokazu Hayashi
  • Publication number: 20120028139
    Abstract: An electrode structure 15 is received in a joint portion of frames 13, 14. A first gas diffusion layer 19 and a first gas passage forming member 21 are arranged on a first surface of the electrode structure 15. A second gas diffusion layer 20 and a second gas passage forming member 22 are formed on a second surface of the electrode structure 15. A separator 23 is joined with a surface of the frame 13 and a surface of the gas passage forming member 21. A separator 24 is joined with a surface of the frame 14 and a surface of the gas passage forming member 22. A water passage 28 is formed between a flat plate 25 of the gas passage forming member 22 and the separator 24. The water passage 28 has a depth set to a value smaller than depth of a gas passage T2 of the gas passage forming member 22. Generated water is introduced from the gas passage T2 of the gas passage forming member 22 to the water passage 28 through capillary action via communication holes 29.
    Type: Application
    Filed: January 19, 2010
    Publication date: February 2, 2012
    Inventors: Kousuke Kawajiri, Keiji Hashimoto, Satoshi Futami, Takamasa Kanie, Kazunari Moteki, Tomokazu Hayashi