Patents by Inventor Takami Ishida
Takami Ishida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8966976Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.Type: GrantFiled: September 20, 2013Date of Patent: March 3, 2015Assignee: Panasonic Intellectual Property Management Co., Ltd.Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
-
Patent number: 8844356Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.Type: GrantFiled: April 12, 2013Date of Patent: September 30, 2014Assignee: Panasonic CorporationInventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
-
Publication number: 20140026657Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.Type: ApplicationFiled: September 20, 2013Publication date: January 30, 2014Applicant: Panasonic CorporationInventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
-
Publication number: 20130307094Abstract: A sensor includes a circuit board, a wiring connection layer, a sensor element, and a conductive post. The circuit board has a first electrode. The wiring connection layer has second and third electrodes. The second electrode is connected to the first electrode. The sensor element has a fourth electrode. The conductive post connects the third electrode electrically with the fourth electrode. This sensor can be driven efficiently.Type: ApplicationFiled: March 5, 2012Publication date: November 21, 2013Applicant: PANASONIC CORPORATIONInventors: Shigehiro Yoshiuchi, Takashi Imanaka, Takami Ishida, Satoshi Ohuchi, Hideo Ohkoshi, Katsuya Morinaka, Daisuke Nakamura, Hiroyuki Nakamura
-
Publication number: 20130228012Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.Type: ApplicationFiled: April 12, 2013Publication date: September 5, 2013Applicant: Panasonic CorporationInventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
-
Publication number: 20130160548Abstract: An inertial force sensor includes a substrate, a transducer disposed on the substrate, and a wiring trace disposed on the substrate and connected with the transducer. The wiring trace includes a lower electrode layer on the substrate, a piezoelectric layer on the lower electrode layer, a capacitance-reducing layer on the piezoelectric layer, and an upper electrode layer on the capacitance-reducing layer. The capacitance-reducing layer has a relative dielectric constant smaller than that of the first piezoelectric layer. This inertial force sensor can improve a noise level.Type: ApplicationFiled: November 7, 2011Publication date: June 27, 2013Applicant: PANASONIC CORPORATIONInventors: Takami Ishida, Tsuyoshi Fujii
-
Patent number: 8434362Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.Type: GrantFiled: August 1, 2011Date of Patent: May 7, 2013Assignee: Panasonic CorporationInventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
-
Publication number: 20120009097Abstract: A flow path device includes a substrate having a trench and columns extending from a bottom of the trench. The trench is configured to have a fluid flowing therein. Each of columns has a side surface having grooves formed therein. The grooves have an annular shape or an arcuate shape. This flow path device reduces damage to the columns, and has a high reliability.Type: ApplicationFiled: September 21, 2011Publication date: January 12, 2012Applicant: Panasonic CorporationInventors: Takeki YAMAMOTO, Masaya Nakatani, Makoto Takahashi, Takami Ishida
-
Publication number: 20110283796Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.Type: ApplicationFiled: August 1, 2011Publication date: November 24, 2011Applicant: PANASONIC CORPORATIONInventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
-
Publication number: 20100126270Abstract: An inertial force sensor includes a weight, a first fixing portion linked to the weight, a second fixing portion linked to the weight via the first fixing portion, a first electrode on a first surface of the weight, a second electrode facing the first electrode, and first and second elastic portions elastically deforming so as to displace the weight. The first elastic portion displaces the weight along an X-axis but not along any of a Y-axis and a Z-axis. The second elastic portion displaces the first fixing portion along the Y-axis but not along any of the X-axis and the Z-axis. This inertial force sensor detects an acceleration at high sensitivity.Type: ApplicationFiled: April 9, 2008Publication date: May 27, 2010Applicant: PANASONIC CORPORATIONInventors: Jirou Terada, Ichirou Satou, Takami Ishida, Takashi Imanaka
-
Patent number: 7587941Abstract: A vibration piezoelectric acceleration sensor including a pair of beam shaped members linearly and oppositely disposed on a frame, a support body supporting the beam shaped member, and a holding part holding the support body moveably in a linear direction, and another pair of beam shaped members disposed linearly and oppositely crossing the pair of beam shaped members detecting acceleration in two axes, i.e. X and Y directions. The beam shaped members are extended and retracted by the acceleration transmitted to the support body through the holding part, changing a natural oscillation frequency. Accordingly, a high change ratio of resonance frequency can be provided with the detection of the acceleration, and the acceleration in the direction of two axes can be detected without being affected by a change in temperature.Type: GrantFiled: February 14, 2005Date of Patent: September 15, 2009Assignee: Panasonic CorporationInventors: Jiro Terada, Masaya Nakatani, Takami Ishida
-
Publication number: 20090064783Abstract: An inertial force sensor includes a detecting device which detects an inertial force, the detecting device having a first orthogonal arm and a supporting portion, the first orthogonal arm having a first arm and a second arm fixed in a substantially orthogonal direction, and the supporting portion supporting the first arm. The second arm has a folding portion. In this configuration, there is provided a small inertial force sensor which realizes detection of a plurality of different inertial forces and detection of inertial forces of a plurality of detection axes.Type: ApplicationFiled: January 22, 2007Publication date: March 12, 2009Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.Inventors: Satoshi Ohuchi, Hiroyuki Aizawa, Jiro Terada, Takami Ishida, Ichirou Satou, Hideo Ohkoshi, Yohei Ashimori
-
Publication number: 20080223132Abstract: A vibration piezoelectric acceleration sensor including a pair of diaphragms linearly and oppositely disposed on a frame, a support body supporting the diaphragm, and a holding part holding the support body slidably in a linear direction, and another pair of diaphragms disposed linearly and oppositely crossing the pair of diaphragms detecting acceleration in two axes, i.e. X and Y directions. The diaphragms are extended and retracted by the acceleration transmitted to the support body through the holding part, changing a natural oscillation frequency. Accordingly, a high change ratio of resonance frequency can be provided with the detection of the acceleration, and the acceleration in two axes directions can be detected without being affected by a change in temperature.Type: ApplicationFiled: February 14, 2005Publication date: September 18, 2008Inventors: Jiro Terada, Masaya Nakatani, Takami Ishida
-
Patent number: 7168321Abstract: The vibration-type piezoelectric acceleration sensor element includes a frame; and a diaphragm, support, and retentive part, provided in the frame. The diaphragm includes a bottom electrode layer, a piezoelectric thin-film layer formed on the bottom electrode layer, and a top electrode layer formed on the piezoelectric thin-film layer. A first end of the diaphragm is connected to the frame. The support retains a second end of the diaphragm. The retentive part retains the support so that the support is reciprocable only in a direction through the first end and the second end of the diaphragm.Type: GrantFiled: July 15, 2005Date of Patent: January 30, 2007Assignee: Matsushita Electric Industrial Co., Ltd.Inventors: Jiro Terada, Takami Ishida, Masaya Nakatani, Masahiro Yasumi
-
Publication number: 20060236763Abstract: The vibration-type piezoelectric acceleration sensor element includes a frame; and a diaphragm, support, and retentive part, provided in the frame. The diaphragm includes a bottom electrode layer, a piezoelectric thin-film layer formed on the bottom electrode layer, and a top electrode layer formed on the piezoelectric thin-film layer. A first end of the diaphragm is connected to the frame. The support retains a second end of the diaphragm. The retentive part retains the support so that the support is reciprocable only in a direction through the first end and the second end of the diaphragm.Type: ApplicationFiled: July 15, 2005Publication date: October 26, 2006Inventors: Jiro Terada, Takami Ishida, Masaya Nakatani, Masahiro Yasumi