Patents by Inventor Takamichi YAMAMOTO

Takamichi YAMAMOTO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230356442
    Abstract: A vibration isolating and damping member that is excellent in mechanical properties such as high-temperature durability, is excellent in reusability, and is capable of reducing manufacturing costs, and a manufacturing method thereof are provided. The vibration isolating and damping member is formed of polyurethane, a polyol component of the polyurethane includes a polyester-based polyol excluding a short-chain polyol, an isocyanate component of the polyurethane contains 1,5-naphthalenediisocyanate as a main component, and the vibration isolating and damping member is formed of a foam of a thermoplastic urethane composition having an NCO index of 0.9 to 1.04.
    Type: Application
    Filed: July 19, 2023
    Publication date: November 9, 2023
    Applicant: Sumitomo Riko Company Limited
    Inventors: Yuka NAGAI, Junki OWAKI, Satoshi MAKIMURA, Takamichi YAMAMOTO, Koji MIZUTANI, Junichiro SUZUKI, Kiyoshi SAKAI
  • Publication number: 20220356557
    Abstract: Provided is an Fe—Pt—BN-based sputtering target that has a high relative density and that suppresses particle generation. The Fe—Pt—BN-based sputtering target has, as a residue after dissolution in aqua regia measured by a procedure below, the particle size distribution in which D90 is 5.5 ?m or less and a proportion of fine particles smaller than 1 ?m is 35% or less. The procedure includes: (1) cutting out an about 4 mm-square sample piece from the sputtering target, followed by pulverizing to prepare a pulverized product; (2) classifying the pulverized product using sieves of 106 ?m and 300 ?m in opening size and collecting a powder that has passed through the 300 ?m sieve and remained on the 106 ?m sieve; (3) immersing the powder in aqua regia heated to 200° C. to prepare a residue-containing solution in which the powder has been dissolved; (4) filtering the residue-containing solution through a 5A filter paper specified in JIS P 3801 and drying a residue on the filter paper at 80° C.
    Type: Application
    Filed: April 7, 2020
    Publication date: November 10, 2022
    Inventors: Takamichi Yamamoto, Masahiro Nishiura, Kenta Kurose, Hironori Kobayashi, Takanobu Miyashita, Tomoko Matsuda
  • Publication number: 20220267892
    Abstract: A problem of particle generation in an Fe-Pt-BN-based sputtering target having a high relative density is resolved by an approach different from conventional methods. An Fe-Pt-BN-based sputtering target having a relative density of 90% or more and a Vickers hardness of 150 or less can reduce the number of particles generated during magnetron sputtering.
    Type: Application
    Filed: May 22, 2020
    Publication date: August 25, 2022
    Inventors: Masahiro Nishiura, Takamichi Yamamoto, Kenta Kurose, Hironori Kobayashi, Takanobu Miyashita
  • Publication number: 20210040602
    Abstract: A sputtering target with suppressed aggregation of C particles and reduced generation of particles is provided. A C-containing sputtering target comprises Pt, C, and one or more selected from Fe and Co, where in a particle size distribution of a dissolution residue of the sputtering target, 90 percentile of the particle diameter based on the volume, D90 is 20.0 ?m or less, and particle size of less than 1.0 ?m accounts for 40% or less in cumulative volume distribution.
    Type: Application
    Filed: April 22, 2019
    Publication date: February 11, 2021
    Inventors: Takamichi Yamamoto, Masahiro Nishiura, Kenta Kurose, Hironori Kobayashi, Takanobu Miyashita, Masahumi Nakano
  • Publication number: 20210032741
    Abstract: Provided is an Fe—Pt-oxide-BN-based sintered compact for a high-density sputtering target that can suppress generation of particles during sputtering. The Fe—Pt-oxide-BN-based sintered compact for a sputtering target has a mass ratio of N to B (N/B) in a range of 1.30±0.1.
    Type: Application
    Filed: March 18, 2019
    Publication date: February 4, 2021
    Inventors: Masahiro Nishiura, Takamichi Yamamoto, Kenta Kurose, Hironori Kobayashi, Takanobu Miyashita
  • Patent number: 10787732
    Abstract: Through the present invention, a thin film containing an FePt-based alloy and carbon, the thin film being capable of being used as a magnetic recording medium, is enabled to be formed using one target, and amount of particles is enabled to be reduced. An FePt—C-based sputtering target containing Fe, Pt, and C, wherein the FePt—C-based sputtering target has a structure in which a C phase substantially being C is dispersed in an FePt-based alloy phase containing 33 mol % or more and 60 mol % or less of Pt with the balance substantially being Fe, an average value of the size indices a of the C phase is 4.0 ?m or more and 9.0 ?m or less, and an average value of the nonspherical indices b of the C phase is 3.0 or more.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: September 29, 2020
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Yasuyuki Goto, Takamichi Yamamoto, Masahiro Nishiura, Ryousuke Kushibiki
  • Publication number: 20190292650
    Abstract: Through the present invention, a thin film containing an FePt-based alloy and carbon, the thin film being capable of being used as a magnetic recording medium, is enabled to be formed using one target, and amount of particles is enabled to be reduced. An FePt—C-based sputtering target containing Fe, Pt, and C, wherein the FePt—C-based sputtering target has a structure in which a C phase substantially being C is dispersed in an FePt-based alloy phase containing 33 mol % or more and 60 mol % or less of Pt with the balance substantially being Fe, an average value of the size indices a of the C phase is 4.0 ?m or more and 9.0 ?m or less, and an average value of the nonspherical indices b of the C phase is 3.0 or more.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 26, 2019
    Inventors: Yasuyuki GOTO, Takamichi YAMAMOTO, Masahiro NISHIURA, Ryousuke KUSHIBIKI
  • Patent number: 10186404
    Abstract: An FePt—C-based sputtering target containing Fe, Pt, and C, wherein the FePt—C-based sputtering target has a structure in which primary particles of C that contain unavoidable impurities are dispersed in an FePt-based alloy phase containing 33 at % or more and 60 at % or less of Pt with the balance being Fe and unavoidable impurities, the primary particles of C being dispersed so as not to be in contact with each other.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: January 22, 2019
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Yasuyuki Goto, Takamichi Yamamoto, Masahiro Nishiura, Ryousuke Kushibiki
  • Publication number: 20160211124
    Abstract: Provided is a warp correction method which can correct warping in a warped sputtering target with a backing plate (BP) by a simple method. This warp correction method involves: an arrangement step of arranging a BP-attached sputtering target on a lower pressing surface of a pressing device in such a way that a target side located above, the pressing device including an upper pressing surface and the lower pressing surface opposing each other in a vertical direction, and of arranging a spacer between outer edge of the backing plate side of the BP-attached target and the lower pressing surface; and a pressing step of pressing the BP-attached target in the vertical direction by means of the pressing device after the arrangement step, wherein the target is a composite including at least one of metal oxide and carbon, the at least one of metal oxide and carbon being dispersed in a matrix metal.
    Type: Application
    Filed: September 5, 2014
    Publication date: July 21, 2016
    Inventors: Osamu ITOH, Takuya NAGASHIMA, Masahiro AONO, Takamichi YAMAMOTO
  • Patent number: 9358612
    Abstract: An FePt-based sputtering target contains Fe, Pt, and a metal oxide, and further contains one or more kinds of metal elements other than Fe and Pt, wherein the FePt-based sputtering target has a structure in which an FePt-based alloy phase and a metal oxide phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and less than 60 at % and the one or more kinds of metal elements in an amount of more than 0 at % and 20 at % or less with the balance being Fe and unavoidable impurities and with the total amount of Pt and the one or more kinds of metal elements being 60 at % or less, and wherein the metal oxide is contained in an amount of 20 vol % or more and 40 vol % or less based on the total amount of the target.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: June 7, 2016
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Takamichi Yamamoto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura
  • Patent number: 9314845
    Abstract: A process for producing an FePt-based sputtering target includes adding C powder containing unavoidable impurities and metal oxide powder containing unavoidable impurities to FePt-based alloy powder containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities so that the C powder and the metal oxide powder are contained to satisfy: 0<??20; 10??<40; and 20??+??40, where ? and ? represent contents of the C powder and the metal oxide powder by vol %, respectively, based on a total amount of the FePt-based alloy powder, the C powder, and the metal oxide powder, followed by mixing the FePt-based alloy powder, the C powder, and the metal oxide powder to produce a powder mixture.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: April 19, 2016
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Takamichi Yamamoto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura
  • Patent number: 9314846
    Abstract: A process for producing an FePt-based sputtering target includes adding metal oxide powder containing unavoidable impurities to FePt-based alloy powder containing Pt in an amount of 40 at % or more and less than 60 at % and one or more kinds of metal elements other than Fe and Pt in an amount of more than 0 at % and 20 at % or less with the balance being Fe and unavoidable impurities and with a total amount of Pt and the one or more kinds of metal elements being 60 at % or less so that the metal oxide powder accounts for 20 vol % or more and 40 vol % or less of a total amount of the FePt-based alloy powder and the metal oxide powder, followed by mixing the FePt-based alloy powder and the metal oxide powder to produce a powder mixture.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: April 19, 2016
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Takamichi Yamamoto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura
  • Publication number: 20160013033
    Abstract: An FePt—C-based sputtering target containing Fe, Pt, and C, wherein the FePt—C-based sputtering target has a structure in which primary particles of C that contain unavoidable impurities are dispersed in an FePt-based alloy phase containing 33 at % or more and 60 at % or less of Pt with the balance being Fe and unavoidable impurities, the primary particles of C being dispersed so as not to be in contact with each other.
    Type: Application
    Filed: January 31, 2014
    Publication date: January 14, 2016
    Inventors: Yasuyuki GOTO, Takamichi YAMAMOTO, Masahiro NISHIURA, Ryousuke KUSHIBIKI
  • Patent number: 9095901
    Abstract: An FePt-based sputtering target has a structure in which an FePt-based alloy phase, a C phase containing unavoidable impurities, and a metal oxide phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities, wherein C is contained in an amount of more than 0 vol % and 20 vol % or less based on the total amount of the target, the metal oxide is contained in an amount of 10 vol % or more and less than 40 vol % based on the total amount of the target, and the total content of C and the metal oxide is 20 vol % or more and 40 vol % or less based on the total amount of the target.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: August 4, 2015
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Takamichi Yamamoto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura
  • Publication number: 20140318954
    Abstract: An FePt-based sputtering target has a structure in which an FePt-based alloy phase, a C phase containing unavoidable impurities, and a metal oxide phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities, wherein C is contained in an amount of more than 0 vol % and 20 vol % or less based on the total amount of the target, the metal oxide is contained in an amount of 10 vol % or more and less than 40 vol % based on the total amount of the target, and the total content of C and the metal oxide is 20 vol % or more and 40 vol % or less based on the total amount of the target.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: Takanobu MIYASHITA, Yasuyuki GOTO, Takamichi YAMAMOTO, Ryousuke KUSHIBIKI, Masahiro AONO, Masahiro NISHIURA
  • Publication number: 20140322062
    Abstract: A process for producing an FePt-based sputtering target includes adding C powder containing unavoidable impurities and metal oxide powder containing unavoidable impurities to FePt-based alloy powder containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities so that the C powder and the metal oxide powder are contained to satisfy: 0<??20; 10??<40; and 20??+??40, where ? and ? represent contents of the C powder and the metal oxide powder by vol %, respectively, based on a total amount of the FePt-based alloy powder, the C powder, and the metal oxide powder, followed by mixing the FePt-based alloy powder, the C powder, and the metal oxide powder to produce a powder mixture.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: Takanobu MIYASHITA, Yasuyuki GOTO, Takamichi YAMAMOTO, Ryousuke KUSHIBIKI, Masahiro AONO, Masahiro NISHIURA
  • Publication number: 20140322063
    Abstract: A process for producing an FePt-based sputtering target includes adding metal oxide powder containing unavoidable impurities to FePt-based alloy powder containing Pt in an amount of 40 at % or more and less than 60 at % and one or more kinds of metal elements other than Fe and Pt in an amount of more than 0 at % and 20 at % or less with the balance being Fe and unavoidable impurities and with a total amount of Pt and the one or more kinds of metal elements being 60 at % or less so that the metal oxide powder accounts for 20 vol % or more and 40 vol % or less of a total amount of the FePt-based alloy powder and the metal oxide powder, followed by mixing the FePt-based alloy powder and the metal oxide powder to produce a powder mixture.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Takanobu MIYASHITA, Yasuyuki GOTO, Takamichi YAMAMOTO, Ryousuke KUSHIBIKI, Masahiro AONO, Masahiro NISHIURA
  • Publication number: 20140318955
    Abstract: An FePt-based sputtering target contains Fe, Pt, and a metal oxide, and further contains one or more kinds of metal elements other than Fe and Pt, wherein the FePt-based sputtering target has a structure in which an FePt-based alloy phase and a metal oxide phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and less than 60 at % and the one or more kinds of metal elements in an amount of more than 0 at % and 20 at % or less with the balance being Fe and unavoidable impurities and with the total amount of Pt and the one or more kinds of metal elements being 60 at % or less, and wherein the metal oxide is contained in an amount of 20 vol % or more and 40 vol % or less based on the total amount of the target.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Takanobu MIYASHITA, Yasuyuki GOTO, Takamichi YAMAMOTO, Ryousuke KUSHIBIKI, Masahiro AONO, Masahiro NISHIURA