Patents by Inventor Takanobu Miyashita

Takanobu Miyashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220356557
    Abstract: Provided is an Fe—Pt—BN-based sputtering target that has a high relative density and that suppresses particle generation. The Fe—Pt—BN-based sputtering target has, as a residue after dissolution in aqua regia measured by a procedure below, the particle size distribution in which D90 is 5.5 ?m or less and a proportion of fine particles smaller than 1 ?m is 35% or less. The procedure includes: (1) cutting out an about 4 mm-square sample piece from the sputtering target, followed by pulverizing to prepare a pulverized product; (2) classifying the pulverized product using sieves of 106 ?m and 300 ?m in opening size and collecting a powder that has passed through the 300 ?m sieve and remained on the 106 ?m sieve; (3) immersing the powder in aqua regia heated to 200° C. to prepare a residue-containing solution in which the powder has been dissolved; (4) filtering the residue-containing solution through a 5A filter paper specified in JIS P 3801 and drying a residue on the filter paper at 80° C.
    Type: Application
    Filed: April 7, 2020
    Publication date: November 10, 2022
    Inventors: Takamichi Yamamoto, Masahiro Nishiura, Kenta Kurose, Hironori Kobayashi, Takanobu Miyashita, Tomoko Matsuda
  • Publication number: 20220267892
    Abstract: A problem of particle generation in an Fe-Pt-BN-based sputtering target having a high relative density is resolved by an approach different from conventional methods. An Fe-Pt-BN-based sputtering target having a relative density of 90% or more and a Vickers hardness of 150 or less can reduce the number of particles generated during magnetron sputtering.
    Type: Application
    Filed: May 22, 2020
    Publication date: August 25, 2022
    Inventors: Masahiro Nishiura, Takamichi Yamamoto, Kenta Kurose, Hironori Kobayashi, Takanobu Miyashita
  • Publication number: 20210040602
    Abstract: A sputtering target with suppressed aggregation of C particles and reduced generation of particles is provided. A C-containing sputtering target comprises Pt, C, and one or more selected from Fe and Co, where in a particle size distribution of a dissolution residue of the sputtering target, 90 percentile of the particle diameter based on the volume, D90 is 20.0 ?m or less, and particle size of less than 1.0 ?m accounts for 40% or less in cumulative volume distribution.
    Type: Application
    Filed: April 22, 2019
    Publication date: February 11, 2021
    Inventors: Takamichi Yamamoto, Masahiro Nishiura, Kenta Kurose, Hironori Kobayashi, Takanobu Miyashita, Masahumi Nakano
  • Publication number: 20210032741
    Abstract: Provided is an Fe—Pt-oxide-BN-based sintered compact for a high-density sputtering target that can suppress generation of particles during sputtering. The Fe—Pt-oxide-BN-based sintered compact for a sputtering target has a mass ratio of N to B (N/B) in a range of 1.30±0.1.
    Type: Application
    Filed: March 18, 2019
    Publication date: February 4, 2021
    Inventors: Masahiro Nishiura, Takamichi Yamamoto, Kenta Kurose, Hironori Kobayashi, Takanobu Miyashita
  • Patent number: 9928996
    Abstract: A process for producing a magnetron sputtering target includes: mixing and dispersing an oxide powder and a magnetic metal powder, the magnetic metal powder containing a ferromagnetic metal element, to obtain a magnetic powder mixture; mixing and dispersing an oxide powder and each of a plurality of non-magnetic metal powders, the plurality of non-magnetic metal powders containing the ferromagnetic metal element, the plurality of non-magnetic metal powders containing a different constituent element from each other or containing constituent elements at different ratios from each other, to obtain a plurality of non-magnetic powder mixtures; and mixing and dispersing the magnetic powder mixture and the plurality of non-magnetic powder mixtures to obtain a powder mixture for pressure sintering.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: March 27, 2018
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto
  • Patent number: 9502224
    Abstract: Provided is a magnetron sputtering target having a ferromagnetic metal element. This magnetron sputtering target includes: a magnetic phase containing the ferromagnetic metal element; a plurality of non-magnetic phases that each contain the ferromagnetic metal element and that are different in constituent elements or a content ratio of constituent elements; and an oxide phase. At least one of the plurality of non-magnetic phases is more finely interdispersed with the oxide phase than the magnetic phase.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: November 22, 2016
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto
  • Patent number: 9358612
    Abstract: An FePt-based sputtering target contains Fe, Pt, and a metal oxide, and further contains one or more kinds of metal elements other than Fe and Pt, wherein the FePt-based sputtering target has a structure in which an FePt-based alloy phase and a metal oxide phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and less than 60 at % and the one or more kinds of metal elements in an amount of more than 0 at % and 20 at % or less with the balance being Fe and unavoidable impurities and with the total amount of Pt and the one or more kinds of metal elements being 60 at % or less, and wherein the metal oxide is contained in an amount of 20 vol % or more and 40 vol % or less based on the total amount of the target.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: June 7, 2016
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Takamichi Yamamoto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura
  • Patent number: 9314846
    Abstract: A process for producing an FePt-based sputtering target includes adding metal oxide powder containing unavoidable impurities to FePt-based alloy powder containing Pt in an amount of 40 at % or more and less than 60 at % and one or more kinds of metal elements other than Fe and Pt in an amount of more than 0 at % and 20 at % or less with the balance being Fe and unavoidable impurities and with a total amount of Pt and the one or more kinds of metal elements being 60 at % or less so that the metal oxide powder accounts for 20 vol % or more and 40 vol % or less of a total amount of the FePt-based alloy powder and the metal oxide powder, followed by mixing the FePt-based alloy powder and the metal oxide powder to produce a powder mixture.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: April 19, 2016
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Takamichi Yamamoto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura
  • Patent number: 9314845
    Abstract: A process for producing an FePt-based sputtering target includes adding C powder containing unavoidable impurities and metal oxide powder containing unavoidable impurities to FePt-based alloy powder containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities so that the C powder and the metal oxide powder are contained to satisfy: 0<??20; 10??<40; and 20??+??40, where ? and ? represent contents of the C powder and the metal oxide powder by vol %, respectively, based on a total amount of the FePt-based alloy powder, the C powder, and the metal oxide powder, followed by mixing the FePt-based alloy powder, the C powder, and the metal oxide powder to produce a powder mixture.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: April 19, 2016
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Takamichi Yamamoto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura
  • Patent number: 9228255
    Abstract: An FePt—C-based sputtering target contains Fe, Pt, and C and has a structure in which an FePt-based alloy phase and a C phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities. The content of C is 21 at % or more and 70 at % or less based on the total amount of the target.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: January 5, 2016
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura
  • Patent number: 9095901
    Abstract: An FePt-based sputtering target has a structure in which an FePt-based alloy phase, a C phase containing unavoidable impurities, and a metal oxide phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities, wherein C is contained in an amount of more than 0 vol % and 20 vol % or less based on the total amount of the target, the metal oxide is contained in an amount of 10 vol % or more and less than 40 vol % based on the total amount of the target, and the total content of C and the metal oxide is 20 vol % or more and 40 vol % or less based on the total amount of the target.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: August 4, 2015
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Takamichi Yamamoto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura
  • Patent number: 9053910
    Abstract: A magnetron sputtering target containing a ferromagnetic metal element includes a magnetic phase containing the ferromagnetic metal element; a plurality of non-magnetic phases containing the ferromagnetic metal element, the plurality of non-magnetic phases containing a different constituent element from each other or containing constituent elements at different ratios from each other; and an oxide phase. Regions of the magnetic phase and the plurality of non-magnetic phases are separated from each other by the oxide phase.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: June 9, 2015
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto
  • Patent number: 8999227
    Abstract: A sintering method with uniaxial pressing includes: a powder filling step of disposing a spent target in an inner space of a frame jig having the inner space piercing in a uniaxial direction, and filling the inner space with a raw material powder for a target to cover an erosion part side of the spent target with the raw material powder for a target, a cushioning-material disposition step of disposing a deformable cushioning material so that the raw material powder for a target with which the inner space has been filled in the powder filling step is sandwiched between the spent target and the deformable cushioning material; and a sintering step of pressing the raw material powder for a target with which the inner space has been filled and the spent target in the uniaxial direction through the cushioning material and sintering them.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: April 7, 2015
    Assignee: Tanaka Holdings Co., Ltd
    Inventors: Toshiya Yamamoto, Takanobu Miyashita, Osamu Itoh
  • Publication number: 20140318954
    Abstract: An FePt-based sputtering target has a structure in which an FePt-based alloy phase, a C phase containing unavoidable impurities, and a metal oxide phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities, wherein C is contained in an amount of more than 0 vol % and 20 vol % or less based on the total amount of the target, the metal oxide is contained in an amount of 10 vol % or more and less than 40 vol % based on the total amount of the target, and the total content of C and the metal oxide is 20 vol % or more and 40 vol % or less based on the total amount of the target.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: Takanobu MIYASHITA, Yasuyuki GOTO, Takamichi YAMAMOTO, Ryousuke KUSHIBIKI, Masahiro AONO, Masahiro NISHIURA
  • Publication number: 20140322062
    Abstract: A process for producing an FePt-based sputtering target includes adding C powder containing unavoidable impurities and metal oxide powder containing unavoidable impurities to FePt-based alloy powder containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities so that the C powder and the metal oxide powder are contained to satisfy: 0<??20; 10??<40; and 20??+??40, where ? and ? represent contents of the C powder and the metal oxide powder by vol %, respectively, based on a total amount of the FePt-based alloy powder, the C powder, and the metal oxide powder, followed by mixing the FePt-based alloy powder, the C powder, and the metal oxide powder to produce a powder mixture.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: Takanobu MIYASHITA, Yasuyuki GOTO, Takamichi YAMAMOTO, Ryousuke KUSHIBIKI, Masahiro AONO, Masahiro NISHIURA
  • Publication number: 20140318955
    Abstract: An FePt-based sputtering target contains Fe, Pt, and a metal oxide, and further contains one or more kinds of metal elements other than Fe and Pt, wherein the FePt-based sputtering target has a structure in which an FePt-based alloy phase and a metal oxide phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and less than 60 at % and the one or more kinds of metal elements in an amount of more than 0 at % and 20 at % or less with the balance being Fe and unavoidable impurities and with the total amount of Pt and the one or more kinds of metal elements being 60 at % or less, and wherein the metal oxide is contained in an amount of 20 vol % or more and 40 vol % or less based on the total amount of the target.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Takanobu MIYASHITA, Yasuyuki GOTO, Takamichi YAMAMOTO, Ryousuke KUSHIBIKI, Masahiro AONO, Masahiro NISHIURA
  • Publication number: 20140322063
    Abstract: A process for producing an FePt-based sputtering target includes adding metal oxide powder containing unavoidable impurities to FePt-based alloy powder containing Pt in an amount of 40 at % or more and less than 60 at % and one or more kinds of metal elements other than Fe and Pt in an amount of more than 0 at % and 20 at % or less with the balance being Fe and unavoidable impurities and with a total amount of Pt and the one or more kinds of metal elements being 60 at % or less so that the metal oxide powder accounts for 20 vol % or more and 40 vol % or less of a total amount of the FePt-based alloy powder and the metal oxide powder, followed by mixing the FePt-based alloy powder and the metal oxide powder to produce a powder mixture.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Takanobu MIYASHITA, Yasuyuki GOTO, Takamichi YAMAMOTO, Ryousuke KUSHIBIKI, Masahiro AONO, Masahiro NISHIURA
  • Publication number: 20140311901
    Abstract: Provided is a magnetron sputtering target having a ferromagnetic metal element. This magnetron sputtering target includes: a magnetic phase containing the ferromagnetic metal element; a plurality of non-magnetic phases that each contain the ferromagnetic metal element and that are different in constituent elements or a content ratio of constituent elements; and an oxide phase. At least one of the plurality of non-magnetic phases is more finely interdispersed with the oxide phase than the magnetic phase.
    Type: Application
    Filed: October 12, 2012
    Publication date: October 23, 2014
    Inventors: Takanobu Miyashita, Yasuyuki Goto
  • Publication number: 20140306144
    Abstract: A process for producing a magnetron sputtering target includes: mixing and dispersing an oxide powder and a magnetic metal powder, the magnetic metal powder containing a ferromagnetic metal element, to obtain a magnetic powder mixture; mixing and dispersing an oxide powder and each of a plurality of non-magnetic metal powders, the plurality of non-magnetic metal powders containing the ferromagnetic metal element, the plurality of non-magnetic metal powders containing a different constituent element from each other or containing constituent elements at different ratios from each other, to obtain a plurality of non-magnetic powder mixtures; and mixing and dispersing the magnetic powder mixture and the plurality of non-magnetic powder mixtures to obtain a powder mixture for pressure sintering.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 16, 2014
    Inventors: Takanobu MIYASHITA, Yasuyuki GOTO
  • Patent number: 8858674
    Abstract: An FePt—C-based sputtering target contains Fe, Pt, and C and has a structure in which an FePt-based alloy phase and a C phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities. The content of C is 21 at % or more and 70 at % or less based on the total amount of the target.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: October 14, 2014
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura