Patents by Inventor Takao Sugiura

Takao Sugiura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11651881
    Abstract: Mn—Zn ferrite particles according to the present invention contain 44-60% by mass of Fe, 10-16% by mass of Mn and 1-11% by mass of Zn. The ferrite particles are single crystal bodies having an average particle diameter of 1-2,000 nm, and have polyhedral particle shapes, while having an average sphericity of 0.85 or more but less than 0.95.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: May 16, 2023
    Assignee: POWDERTECH CO., LTD.
    Inventors: Takashi Kojima, Kazutaka Ishii, Takao Sugiura, Tetsuya Igarashi, Koji Aga
  • Publication number: 20230085745
    Abstract: Provided are a ferrite powder capable of maintaining a high withstand voltage even when used in a resin composition having high magnetic properties and electrical resistivity and a high filling ratio, and a method for producing the same. A ferrite powder composed of spherical ferrite particles, wherein the ferrite powder contains iron (Fe): 55.0-70.0 mass % and manganese (Mn): 3.5-18.5 mass %, the ferrite powder containing more than 0.0 mass % to 7.5 mass % ?-Fe2O3, and the ferrite powder has a volume average particle size (D50) of 15.0 ?m or less.
    Type: Application
    Filed: January 27, 2021
    Publication date: March 23, 2023
    Inventors: Koji AGA, Takashi KOJIMA, Takao SUGIURA, Sho KUWAHARA, Satomi KONNO, Tadashi TSUDUKI
  • Patent number: 11542174
    Abstract: An object of the present invention is to provide ferrite particles having a high magnetic permeability in a frequency band of 1 MHz to 1 GHz. Another object is to provide a resin composition containing the ferrite particles and an electromagnetic wave shielding material composed of the resin composition. The ferrite particles are composed of a single crystalline body having an average particle size of 1 to 2000 nm and has a spherical particle shape, wherein the ferrite particles contain substantially no Zn, 3 to 25 wt % of Mn, and 43 to 65 wt % of Fe, and a real part ?? of a complex magnetic permeability measured using a molding composed of the ferrite particles and a binder resin has a maximal value in a frequency band of 100 MHz to 1 GHz.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: January 3, 2023
    Assignee: POWDERTECH CO., LTD.
    Inventors: Takashi Kojima, Kazutaka Ishii, Takao Sugiura, Tetsuya Igarashi, Koji Aga
  • Patent number: 11521768
    Abstract: The ferrite powder of the present invention is a ferrite powder containing a plurality of ferrite particles, wherein the ferrite particles each are a single crystal body having an average particle diameter of 1-2,000 nm, and have a polyhedron shape, and wherein the ferrite particles each contain 2.0-10.0 mass % of Sr, and 55.0-70.0 mass % of Fe.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: December 6, 2022
    Assignee: POWDERTECH CO., LTD.
    Inventors: Kazutaka Ishii, Koji Aga, Takao Sugiura, Takashi Kojima
  • Publication number: 20220340444
    Abstract: Provided are: a ferrite powder whereby, when the ferrite powder is applied in a composite material, dropping out of ferrite particles is suppressed without moldability and filling ability being compromised; a ferrite resin composite material; and an electromagnetic shielding material, an electronic material, or an electronic component. This ferrite powder includes at least spherical or polyhedral ferrite particles in which a step structure is provided on surfaces thereof, the step structure having a polyhedral outline in the surfaces of the ferrite particles.
    Type: Application
    Filed: October 7, 2020
    Publication date: October 27, 2022
    Inventors: Koji AGA, Takashi KOJIMA, Takao SUGIURA, Tadashi TSUDUKI, Satomi KONNO, Sho KUWAHARA
  • Patent number: 11150569
    Abstract: Provided are a ferrite carrier core material for an electrophotographic developer having a full length L1 of grain boundary and a circumference length L2 of the core material in a cross-section of the core material, and satisfying a relationship of 2?L1/L2?9; a carrier for an electrophotographic developer including the ferrite carrier core material and a coating layer containing a resin provided on a surface of the ferrite carrier core material; and an electrophotographic developer including the carrier and a toner.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: October 19, 2021
    Assignee: POWDERTECH CO., LTD.
    Inventors: Yuzuru Yamasaki, Takao Sugiura, Takeshi Naito, Tetsuya Uemura
  • Patent number: 11014826
    Abstract: An object of the present invention is to provide ferrite particles having a high saturation magnetisation, and being excellent in the dispersibility in a resin, a solvent or a resin composition, a resin composition including the ferrite particles, and a resin film composed of the resin composition. The ferrite particles are a single crystalline body having an average particle size of 1 to 2000 nm, and Mn-based ferrite particles having a spherical shape, and have a saturation magnetisation of 45 to 95 Am2/kg. The resin composition includes the ferrite particles as a filler. The resin film is composed of the resin composition.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: May 25, 2021
    Assignee: POWDERTECH CO., LTD.
    Inventors: Takashi Kojima, Kazutaka Ishii, Takao Sugiura, Tetsuya Igarashi, Koji Aga
  • Patent number: 10825593
    Abstract: An object of the present invention is to provide ferrite particles having high saturation magnetisation and electrical resistivity, excellent in dispersibility in a resin, a solvent, or a resin composition; a rein composition containing the ferrite particles; and a resin molding composed of the resin composition. A Ni-Zn-Cu ferrite particle is in a single crystalline body having an average particle diameter of 1 to 2000 nm, has a polyhedral particle shape, and comprises 5 to 10 wt % of Ni, 15 to 30 wt % of Zn, 1 to 5 wt % of Cu, and 25 to 50 wt % of Fe.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: November 3, 2020
    Assignee: POWDERTECH CO., LTD.
    Inventors: Takashi Kojima, Kazutaka Ishii, Takao Sugiura, Tetsuya Igarashi, Koji Aga
  • Patent number: 10775711
    Abstract: An object of the present invention is to provide a ferrite carrier core material for an electrophotographic developer having desired resistance properties and charging properties with small environmental variation of resistivity and charge amount while maintaining the advantages of ferrite carriers, a ferrite carrier for an electrophotographic developer, an electrophotographic developer using the ferrite carrier, and a method for manufacturing the ferrite carrier core material for an electrophotographic developer. In order to solve the problem, a ferrite carrier core material comprising ferrite particles containing 15 mass % or more and 25 mass % or less of Mn, 0.5 mass % or more and 5.0 mass % or less of Mg, 0.05 mass % or more and 4.0 mass % of Sr, and 45 mass % or more and 55 mass % or less of Fe, with Si localized in the surface thereof is used.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: September 15, 2020
    Assignee: POWDERTECH CO., LTD.
    Inventors: Takao Sugiura, Kazutaka Ishii, Koji Aga
  • Publication number: 20200251263
    Abstract: Mn—Zn ferrite particles according to the present invention contain 44-60% by mass of Fe, 10-16% by mass of Mn and 1-11% by mass of Zn. The ferrite particles are single crystal bodies having an average particle diameter of 1-2,000 nm, and have polyhedral particle shapes, while having an average sphericity of 0.85 or more but less than 0.95.
    Type: Application
    Filed: September 27, 2018
    Publication date: August 6, 2020
    Inventors: Takashi KOJIMA, Kazutaka ISHII, Takao SUGIURA, Tetsuya IGARASHI, Koji AGA
  • Publication number: 20200143966
    Abstract: The ferrite powder of the present invention is a ferrite powder containing a plurality of ferrite particles, wherein the ferrite particles each are a single crystal body having an average particle diameter of 1-2,000 nm, and have a polyhedron shape, and wherein the ferrite particles each contain 2.0-10.0 mass % of Sr, and 55.0-70.0 mass % of Fe.
    Type: Application
    Filed: March 30, 2018
    Publication date: May 7, 2020
    Inventors: Kazutaka ISHII, Koji AGA, Takao SUGIURA, Takashi KOJIMA
  • Patent number: 10603614
    Abstract: An object of the present invention is to provide ferrite particles for a filtering medium excellent in filtration ability having a small apparent density, capable of various properties maintained in the controllable state and filling a specified volume with a small amount, and a filtering medium made from the ferrite particles. In order to achieve the object, ferrite particles provided an outer shell structure containing Ti oxide for a filtering medium, and a filtering medium made from the ferrite particles are employed.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: March 31, 2020
    Assignee: POWDERTECH CO., LTD.
    Inventors: Koji Aga, Takao Sugiura
  • Patent number: 10585369
    Abstract: An object of the present invention is to provide a ferrite particle having a low apparent density, filling a specified volume with a low weight with various properties maintained in a controllable state, a ferrite carrier core material composed of the ferrite particle, and a ferrite carrier using the ferrite core material and an electrophotographic developer. To achieve the object, the ferrite particle having the outer shell structure containing the Ti oxide for the ferrite carrier core material, and the ferrite carrier using the ferrite particle as the ferrite carrier core material and the electrophotographic developer are employed.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: March 10, 2020
    Assignee: POWDERTECH CO., LTD.
    Inventors: Koji Aga, Takao Sugiura
  • Patent number: 10564561
    Abstract: An object of the present invention is to provide a ferrite carrier core material for an electrophotographic developer having desired resistance properties and charging properties with small environmental variation of resistivity and charge amount while maintaining the advantages of ferrite carriers, a ferrite carrier for an electrophotographic developer, an electrophotographic developer using the ferrite carrier, and a method for manufacturing the ferrite carrier core material for an electrophotographic developer. In order to solve the problem, a ferrite carrier core material comprising ferrite particles containing 15 mass % or more and 25 mass % or less of Mn, 0.5 mass % or more and 5.0 mass % or less of Mg, 0.05 mass % or more and 4.0 mass % of Sr, and 45 mass % or more and 55 mass % or less of Fe, with Zr localized in the surface thereof is used.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: February 18, 2020
    Assignee: POWDERTECH CO., LTD.
    Inventors: Takao Sugiura, Kazutaka Ishii, Koji Aga
  • Publication number: 20190341177
    Abstract: An object of the present invention is to provide ferrite particles having high saturation magnetisation and electrical resistivity, excellent in dispersibility in a resin, a solvent, or a resin composition; a rein composition containing the ferrite particles; and a resin molding composed of the resin composition. A Ni-Zn-Cu ferrite particle is in a single crystalline body having an average particle diameter of 1 to 2000 nm, has a polyhedral particle shape, and comprises 5 to 10 wt % of Ni, 15 to 30 wt % of Zn, 1 to 5 wt % of Cu, and 25 to 50 wt % of Fe.
    Type: Application
    Filed: June 7, 2017
    Publication date: November 7, 2019
    Applicant: POWDERTECH CO., LTD.
    Inventors: Takashi KOJIMA, Kazutaka ISHII, Takao SUGIURA, Tetsuya IGARASHI, Koji AGA
  • Publication number: 20190300379
    Abstract: An object of the present invention is to provide ferrite particles having a high magnetic permeability in a frequency band of 1 MHz to 1 GHz. Another object is to provide a resin composition containing the ferrite particles and an electromagnetic wave shielding material composed of the resin composition. The ferrite particles are composed of a single crystalline body having an average particle size of 1 to 2000 nm and has a spherical particle shape, wherein the ferrite particles contain substantially no Zn, 3 to 25 wt % of Mn, and 43 to 65 wt % of Fe, and a real part ?? of a complex magnetic permeability measured using a molding composed of the ferrite particles and a binder resin has a maximal value in a frequency band of 100 MHz to 1 GHz.
    Type: Application
    Filed: May 31, 2017
    Publication date: October 3, 2019
    Applicant: POWDERTECH CO., LTD.
    Inventors: Takashi KOJIMA, Kazutaka ISHII, Takao SUGIURA, Tetsuya IGARASHI, Koji AGA
  • Publication number: 20190163081
    Abstract: Provided are a ferrite carrier core material for an electrophotographic developer having a full length L1 of grain boundary and a circumference length L2 of the core material in a cross-section of the core material, and satisfying a relationship of 2?L1/L2?9; a carrier for an electrophotographic developer including the ferrite carrier core material and a coating layer containing a resin provided on a surface of the ferrite carrier core material; and an electrophotographic developer including the carrier and a toner.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 30, 2019
    Inventors: Yuzuru YAMASAKI, Takao SUGIURA, Takeshi NAITO, Tetsuya UEMURA
  • Publication number: 20190161362
    Abstract: An object of the present invention is to provide ferrite particles having a high saturation magnetisation, and being excellent in the dispersibility in a resin, a solvent or a resin composition, a resin composition including the ferrite particles, and a resin film composed of the resin composition. The ferrite particles are a single crystalline body having an average particle size of 1 to 2000 nm, and Mn-based ferrite particles having a spherical shape, and have a saturation magnetisation of 45 to 95 Am2/kg. The resin composition includes the ferrite particles as a filler. The resin film is composed of the resin composition.
    Type: Application
    Filed: February 22, 2017
    Publication date: May 30, 2019
    Applicant: POWDERTECH CO., LTD.
    Inventors: Takashi KOJIMA, Kazutaka ISHII, Takao SUGIURA, Tetsuya IGARASHI, Koji AGA
  • Patent number: 10258970
    Abstract: An object of the present invention is to provide ferrite particles for supporting a catalyst having a small apparent density, various properties are maintained in a controllable state and a specified volume is filled with a small weight, and a catalyst using the ferrite particles for supporting a catalyst. To achieve the object, ferrite particles for supporting a catalyst provided with an outer shell structure containing Ti oxide, a catalyst using the ferrite particles for supporting a catalyst are employed.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: April 16, 2019
    Assignee: POWDERTECH CO., LTD.
    Inventors: Koji Aga, Takao Sugiura
  • Publication number: 20190086829
    Abstract: An object of the present invention is to provide a ferrite carrier core material for an electrophotographic developer having desired resistance properties and charging properties with small environmental variation of resistivity and charge amount while maintaining the advantages of ferrite carriers, a ferrite carrier for an electrophotographic developer, an electrophotographic developer using the ferrite carrier, and a method for manufacturing the ferrite carrier core material for an electrophotographic developer. In order to solve the problem, a ferrite carrier core material comprising ferrite particles containing 15 mass % or more and 25 mass % or less of Mn, 0.5 mass % or more and 5.0 mass % or less of Mg, 0.05 mass % or more and 4.0 mass % of Sr, and 45 mass % or more and 55 mass % or less of Fe, with Si localized in the surface thereof is used.
    Type: Application
    Filed: March 29, 2017
    Publication date: March 21, 2019
    Applicant: POWDERTECH CO., LTD.
    Inventors: Takao SUGIURA, Kazutaka ISHII, Koji AGA