Patents by Inventor Takashi Iijima

Takashi Iijima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230395817
    Abstract: A carbon material for a catalyst carrier of a polymer electrolyte fuel cell, in which a nitrogen adsorption/desorption isotherm exhibits two hysteresis loops having a first hysteresis loop and a second hysteresis loop in a range where a relative pressure P/P0 is 0.4 or more.
    Type: Application
    Filed: October 19, 2021
    Publication date: December 7, 2023
    Applicant: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Kazuyoshi Masaki, Wakana Tada, Takehiro Shimizu, Kenichiro Tadokoro, Takashi Iijima, Masataka Hiyoshi, Shinya Furukawa, Tomoko Komura
  • Patent number: 11576653
    Abstract: An ultrasonic generator includes an ultrasonic wave source and a converging portion. The converging portion includes a first reflecting portion which reflects the ultrasonic wave generated by the ultrasonic wave source on its first reflecting surface, a second reflecting portion which reflects the ultrasonic wave reflected by the first reflecting surface on its second reflecting surface, and a waveguide serving as a transmission path for the ultrasonic wave. The waveguide is disposed such that the ultrasonic wave reflected by the second reflecting surface is introduced through an introduction portion thereof. The focal point of the second reflecting surface and the focal point of the first reflecting surface are disposed such that the ultrasonic wave reflected by the second reflecting surface becomes a plane wave.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: February 14, 2023
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Takeshi Morita, Kang Chen, Takashi Iijima, Takasuke Irie
  • Patent number: 11394034
    Abstract: A support for a polymer electrolyte fuel cell catalyst satisfying the following requirements (A), (B), (C), and (D), and a producing method thereof, as well as a catalyst layer for a polymer electrolyte fuel cell and a fuel cell: (A) a specific surface area according to a BET analysis of a nitrogen adsorption isotherm is from 450 to 1500 m2/g. (B) a nitrogen adsorption and desorption isotherm forms a hysteresis loop in a range of relative pressure P/P0 of more than 0.47 but not more than 0.90, and a hysteresis loop area ?S0.47-0.9 is from 1 to 35 mL/g; (C) a relative pressure Pclose/P0 at which the hysteresis loop closes is more than 0.47 but not more than 0.70; and (D) a half-width of a G band detected by Raman spectrometry in a range of from 1500 to 1700 cm?1 is from 45 to 75 cm?1.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: July 19, 2022
    Assignee: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Iijima, Kenichiro Tadokoro, Masataka Hiyoshi, Shinya Furukawa, Tomoko Komura, Kazuhiko Mizuuchi
  • Patent number: 11302928
    Abstract: The present invention is a carbon material for a catalyst carrier of a polymer electrolyte fuel cell, which has a three-dimensional dendritic structure, and simultaneously satisfies the following (A), (B), and (C). (A) By a laser Raman spectroscopic analysis with a wavelength of 532 nm, a standard deviation ?(R) of an intensity ratio (R value) of an intensity of a D-band (near 1360 cm?1) to an intensity of a G-band (near 1580 cm?1) measured with a beam diameter of 1 ?m at 50 measurement points is from 0.01 to 0.07. (B) A BET specific surface area SBET is from 400 to 1520 m2/g. (C) A nitrogen gas adsorption amount VN:0.4-0.8 during a relative pressure (p/p0) from 0.4 to 0.8 is from 100 to 300 cc(STP)/g. A method of producing such a carbon material for a catalyst carrier is also included.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: April 12, 2022
    Assignee: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Iijima, Kenichiro Tadokoro, Masataka Hiyoshi, Shinya Furukawa, Tomoko Komura, Kazuyoshi Masaki, Hiroyuki Hayashida, Wakana Tada
  • Publication number: 20220042175
    Abstract: [Problem] To propose a stainless steel structure excellent in hydrogen embrittlement resistance and corrosion resistance, being high in mass productivity, simple in device structure, low in equipment cost, and having a high cost advantage, and a method for manufacturing the same. [Solving means] It is stainless steel having hydrogen embrittlement resistance and corrosion resistance, a surface of electrolytically polished stainless steel being coated with a film obtained by passivating a metal oxide formed by a wet process, wherein the film thickness of the film obtained by passivating the metal oxide formed by a wet process is greater than 100 nm. A hydrogen permeability ratio (film-formed product/film-unformed product) is equal to or less than 2.0×10?2, and a relative reduction of area (under a hydrogen atmosphere of 110 MPa/under a nitrogen atmosphere of 10 MPa) in an SSRT test is equal to or greater than 0.8.
    Type: Application
    Filed: August 4, 2021
    Publication date: February 10, 2022
    Applicants: Asahimekki Corporation, The University of Electro-Communications, National Institute of Advanced Industrial Science and Technology, Tottori Institute of Industrial Technology
    Inventors: Kazuyoshi KAWAMI, Atsushi KINOSHITA, Takashi YAMANAKA, Yoji FUKUDA, Motonori TAMURA, Takashi IIJIMA, Hirotoshi ENOKI, Hiroyasu TAMAI, Mutsuharu IMAOKA, Takeshi FUKUTANI, Toshiyuki TANAKA, Yoshiaki SUZUKI
  • Publication number: 20210344019
    Abstract: Provided are a carbon material for a catalyst carrier of a polymer electrolyte fuel cell, the carbon material being a porous carbon material and simultaneously satisfying (1) an intensity ratio (I750/Ipeak) of an intensity at 750° C. (I750) and a peak intensity in a vicinity of 690° C. (Ipeak), in a derivative thermogravimetric curve (DTG) obtained by a thermogravimetric analysis when a temperature is raised at a rate of 10° C./min under an air atmosphere, is 0.10 or less; (2) a BET specific surface area, determined by BET analysis of a nitrogen gas adsorption isotherm, is from 400 to 1,500 m2/g; (3) an integrated pore volume V2-10 of a pore diameter of from 2 to 10 nm, determined by analysis of the nitrogen gas adsorption isotherm using Dollimore-Heal method, is from 0.4 to 1.5 mL/g; and (4) a nitrogen gas adsorption amount Vmacro at a relative pressure of from 0.95 to 0.99 in the nitrogen gas adsorption isotherm is from 300 to 1,200 cc(STP)/g, as well as a method of producing the same.
    Type: Application
    Filed: September 28, 2018
    Publication date: November 4, 2021
    Applicant: Nippon Steel Chemical & Material Co., Ltd.
    Inventors: Takashi Iijima, Kenichiro Tadokoro, Masataka Hiyoshi, Shinya Furukawa, Tomoko Komura, Kazuyoshi Masaki, Hiroyuki Hayashida, Wakana Tada
  • Patent number: 11073199
    Abstract: A breather device that communicates an inside of a case with an outside of the case in a vertical direction includes a cylindrical body having a hollow portion that extends in the vertical direction, a stopper inserted in the hollow portion, and a blocking body that is located in a space defined by the stopper in the hollow portion, and blocks a communicating hole provided in a lower part of the cylindrical body as viewed in the vertical direction. The communicating hole ceases to be blocked when the pressure inside the case exceeds a first predetermined value, and the blocking body moves upward in the vertical direction in the space.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: July 27, 2021
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN AW CO., LTD.
    Inventors: Guodong Tan, Shinichi Ito, Yukihiko Ideshio, Masashi Ikemura, Takashi Iijima, Masamichi Yamaguchi, Keisuke Tanaka, Tetsuya Yamaguchi, Ryota Yoshimoto
  • Publication number: 20210169450
    Abstract: An ultrasonic generator includes an ultrasonic wave source and a converging portion. The converging portion includes a first reflecting portion which reflects the ultrasonic wave generated by the ultrasonic wave source on its first reflecting surface, a second reflecting portion which reflects the ultrasonic wave reflected by the first reflecting surface on its second reflecting surface, and a waveguide serving as a transmission path for the ultrasonic wave. The waveguide is disposed such that the ultrasonic wave reflected by the second reflecting surface is introduced through an introduction portion thereof. The focal point of the second reflecting surface and the focal point of the first reflecting surface are disposed such that the ultrasonic wave reflected by the second reflecting surface becomes a plane wave.
    Type: Application
    Filed: December 1, 2020
    Publication date: June 10, 2021
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Takeshi MORITA, Kang CHEN, Takashi IIJIMA, Takasuke IRIE
  • Publication number: 20210018085
    Abstract: A breather device that communicates an inside of a case with an outside of the case in a vertical direction includes a cylindrical body having a hollow portion that extends in the vertical direction, a stopper inserted in the hollow portion, and a blocking body that is located in a space defined by the stopper in the hollow portion, and blocks a communicating hole provided in a lower part of the cylindrical body as viewed in the vertical direction. The communicating hole ceases to be blocked when the pressure inside the case exceeds a first predetermined value, and the blocking body moves upward in the vertical direction in the space.
    Type: Application
    Filed: July 15, 2020
    Publication date: January 21, 2021
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN AW CO., LTD.
    Inventors: Guodong TAN, Shinichi ITO, Yukihiko IDESHIO, Masashi IKEMURA, Takashi IIJIMA, Masamichi YAMAGUCHI, Keisuke TANAKA, Tetsuya YAMAGUCHI, Ryota YOSHIMOTO
  • Publication number: 20210018088
    Abstract: An oil supply system for a vehicle includes a plurality of oil pumps, suction oil passages, and a communication passage. The oil pumps are independently operational. The suction oil passages each connect an associated one of suction portions of the plurality of oil pumps and a common oil strainer. The communication passage connects the suction oil passages.
    Type: Application
    Filed: July 13, 2020
    Publication date: January 21, 2021
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN AW CO., LTD.
    Inventors: Guodong TAN, Shinichi ITO, Yukihiko IDESHIO, Masashi IKEMURA, Ryota YOSHIMOTO, Shinichiro MATSUBARA, Masamichi YAMAGUCHI, Takashi IIJIMA
  • Patent number: 10886539
    Abstract: A carbon material for catalyst carrier use excellent in both durability and power generation performance under operating conditions at the time of low humidity, in particular both durability of a carbon material for catalyst carrier use with respect to repeated load fluctuations due to startup and shutdown and power generation performance under operating conditions at the time of low humidity, and a catalyst for solid-polymer fuel cell use prepared using the same etc. are provided. To solve this technical problem, according to one aspect of the present invention, there is provided a carbon material for catalyst carrier use satisfying the following (A) to (D): (A) an oxygen content OICP of 0.1 to 3.0 mass % contained in the carbon material for catalyst carrier use; (B) a residual amount of oxygen O1200° C. of 0.1 to 1.5 mass % remaining after heat treatment in an inert gas (or vacuum) atmosphere at 1200° C.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: January 5, 2021
    Assignee: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Iijima, Noriyuki Negi, Masataka Hiyoshi, Katsumasa Matsumoto, Shinya Furukawa, Kenichiro Tadokoro, Takumi Nishimoto, Hiroyuki Hayashida, Takumi Kouno, Kazuhiko Mizuuchi
  • Publication number: 20200287221
    Abstract: A support for a polymer electrolyte fuel cell catalyst satisfying the following requirements (A), (B), (C), and (D), and a producing method thereof, as well as a catalyst layer for a polymer electrolyte fuel cell and a fuel cell: (A) a specific surface area according to a BET analysis of a nitrogen adsorption isotherm is from 450 to 1500 m2/g. (B) a nitrogen adsorption and desorption isotherm forms a hysteresis loop in a range of relative pressure P/P0 of more than 0.47 but not more than 0.90, and a hysteresis loop area ?S0.47-0.9 is from 1 to 35 mL/g; (C) a relative pressure Pclose/P0 at which the hysteresis loop closes is more than 0.47 but not more than 0.70; and (D) a half-width of a G band detected by Raman spectrometry in a range of from 1500 to 1700 cm?1 is from 45 to 75 cm?1.
    Type: Application
    Filed: June 29, 2018
    Publication date: September 10, 2020
    Applicant: NIPPON STEEL Chemical & Material Co., Ltd.
    Inventors: Takashi IIJIMA, Kenichiro TADOKORO, Masataka HIYOSHI, Shinya FURUKAWA, Tomoko KOMURA, Kazuhiko MIZUUCHI
  • Publication number: 20200233462
    Abstract: An electronic device includes: a display; a housing including a first cover that covers an end of the display; a panel that is supported by a first face of the first cover and covers the display; and an elastic member that is bonded with the first face, faces a first end face of the panel, extends along the first end face crossing a front face of the panel, and protrudes beyond the front face. The first face is on an opposite side of the display.
    Type: Application
    Filed: December 16, 2019
    Publication date: July 23, 2020
    Applicant: FUJITSU CLIENT COMPUTING LIMITED
    Inventors: Shintaro Ohishi, Takashi Abe, Takashi Iijima
  • Publication number: 20200119367
    Abstract: A carbon material for use as a catalyst carrier for a polymer electrolyte fuel cell which is a porous carbon material and satisfies at the same time (1) the content of a crystallized material is 1.6 or less, (2) the BET specific surface area obtained by a BET analysis of a nitrogen gas adsorption isotherm is from 400 to 1500 m2/g, (3) the cumulative pore volume V2-10 with respect to a pore diameter of from 2 to 10 nm obtained by an analysis of a nitrogen gas adsorption isotherm using the Dollimore-Heal method is from 0.4 to 1.5 mL/g, and (4) the nitrogen gas adsorption amount Vmacro between a relative pressure of 0.95 and 0.99 in a nitrogen gas adsorption isotherm is from 300 to 1200 cc(STP)/g, and the method of producing the same.
    Type: Application
    Filed: April 2, 2018
    Publication date: April 16, 2020
    Applicant: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi IIJIMA, Kenichiro TADOKORO, Masataka HIYOSHI, Shinya FURUKAWA, Tomoko KOMURA, Kazuyoshi MASAKI, Hiroyuki HAYASHIDA, Wakana TADA
  • Publication number: 20200055026
    Abstract: A carbon material for a catalyst carrier of a polymer electrolyte fuel cell a porous carbon material with a three-dimensionally branched three-dimensional dendritic structure, has a branch diameter of 81 nm or less, and simultaneously satisfies conditions (A) and (B) whereby: (A) a BET specific surface area SBET is from 400 to 1500 m2/g; and (B) with respect to a relationship between a mercury pressure PHg and a mercury absorption amount VHg measured by mercury porosimetry, an increment ?VHg:4.3-4.8 of the measured mercury absorption amount VHg is from 0.82 to 1.50 cc/g in a case in which the common logarithm Log PHg of the mercury pressure PHg has increased from 4.3 to 4.8. A method of producing this kind of a carbon material for a catalyst carrier is also provided.
    Type: Application
    Filed: April 2, 2018
    Publication date: February 20, 2020
    Applicants: NIPPON STEEL CORPORATION, NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi IIJIMA, Wakana TADA, Kazuyoshi MASAKI
  • Publication number: 20200044261
    Abstract: The present invention is a carbon material for a catalyst carrier of a polymer electrolyte fuel cell, which has a three-dimensional dendritic structure, and simultaneously satisfies the following (A), (B), and (C). (A) By a laser Raman spectroscopic analysis with a wavelength of 532 nm, a standard deviation ?(R) of an intensity ratio (R value) of an intensity of a D-band (near 1360 cm?1) to an intensity of a G-band (near 1580 cm?1) measured with a beam diameter of 1 ?m at 50 measurement points is from 0.01 to 0.07. (B) A BET specific surface area SBET is from 400 to 1520 m2/g. (C) A nitrogen gas adsorption amount VN:0.4-0.8 during a relative pressure (p/p0) from 0.4 to 0.8 is from 100 to 300 cc(STP)/g. A method of producing such a carbon material for a catalyst carrier is also included.
    Type: Application
    Filed: April 2, 2018
    Publication date: February 6, 2020
    Applicants: NIPPON STEEL CORPORATION, NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi IIJIMA, Kenichiro TADOKORO, Masataka HIYOSHI, Shinya FURUKAWA, Tomoko KOMURA, Kazuyoshi MASAKI, Hiroyuki HAYASHIDA, Wakana TADA
  • Patent number: 10168745
    Abstract: An information processing apparatus includes: a display unit; a circuit board; a power supply cable coupled to the circuit board; a coupling cable including an overlapping portion that overlaps with the power supply cable as viewed in a thicknesswise direction of the circuit board and coupled to the display unit; and a projection projecting from the circuit board and disposed between the power supply cable and the overlapping portion.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: January 1, 2019
    Inventors: Takashi Abe, Takashi Iijima, Shinya Matsushita
  • Patent number: 10103398
    Abstract: A support carbon material able to support a catalyst metal in a highly dispersed state and resistant to the flooding phenomenon and with little voltage drop even at the time of large current power generation under high humidity conditions and a catalyst using the same, specifically, a support carbon material for solid polymer type fuel cell use comprised of a porous carbon material which has a pore volume and a pore area found by the BJH analysis method from a nitrogen adsorption isotherm in an adsorption process of a radius 2 nm to 50 nm pore volume VA of 1 ml/g to 5 ml/g and a radius 2 nm to 50 nm pore area S2-50 of 300 m2/g to 1500 m2/g and a ratio (V5-25/VA) of radius 5 nm to 25 nm pore volume V5-25 (ml/g) to said pore volume VA (ml/g) of 0.4 to 0.7 and a ratio (V2-5/VA) of radius 2 nm to 5 nm pore volume V2-5 (ml/g) to the same of 0.2 to 0.5 and a catalyst using the same.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: October 16, 2018
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, NIPPON STEEL & SUMIKIN CHEMICAL CO., LTD.
    Inventors: Shinya Furukawa, Takashi Iijima, Masataka Hiyoshi, Katsumasa Matsumoto, Noriyuki Negi, Hiroyuki Hayashida
  • Patent number: 10096837
    Abstract: Provided are: a supporting carbon material for a solid polymer fuel cell, said supporting carbon material making it possible to produce a high-performance solid polymer fuel cell in which there is little decrease in power generation performance as a result of repeated battery load fluctuation that inevitably occurs during operation of the solid polymer fuel cell; and a catalyst metal particle-supporting carbon material. The present invention relates to: a supporting carbon material for a solid polymer fuel cell, said supporting carbon material being a porous carbon material in which the specific surface area of mesopores having a pore diameter of 2-50 nm according to nitrogen adsorption measurement is 600-1,600 m2/g, the relative intensity ratio (IG?/IG) of the peak intensity (IG?) of the G-band 2,650-2,700 cm?1 range to the peak intensity (IG) of the G-band 1,550-1,650 cm?1 range in the Raman spectrum is 0.8-2.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: October 9, 2018
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, NIPPON STEEL & SUMIKIN CHEMICAL CO., LTD.
    Inventors: Takashi Iijima, Masataka Hiyoshi, Katsumasa Matsumoto, Hiroyuki Hayashida, Kazuhiko Mizuuchi, Takumi Kouno, Masakazu Higuchi, Masakazu Katayama
  • Patent number: 10003085
    Abstract: Provided are a supporting carbon material for a solid polymer fuel cell and a metal-catalyst-particle-supporting carbon material that, when used as a carrier for a solid polymer fuel cell catalyst, have excellent power generation performance in high-humidity conditions, which are conditions in which solid polymer fuel cells are operated. A supporting carbon material for a solid polymer fuel cell and a metal-catalyst-particle-supporting carbon material characterized in being a porous carbon material, the hydrogen content being 0.004-0.010% by mass, the nitrogen adsorption BET specific surface area being 600 m2/g-1500 m2/g, and the relative intensity ratio (ID/IG) between the peak intensity (ID) in the range of 1200-1400 cm?1 known as the D-band and the peak intensity (IG) in the range of 1500-1700 cm?1 known as the G-band, obtained from the Raman spectrum, being 1.0-2.0.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: June 19, 2018
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, NIPPON STEEL & SUMIKIN CHEMICAL CO., LTD.
    Inventors: Katsumasa Matsumoto, Takashi Iijima, Masataka Hiyoshi, Hiroyuki Hayashida, Kazuhiko Mizuuchi, Takumi Kouno, Masakazu Higuchi, Masakazu Katayama