Patents by Inventor Takashi Inagaki

Takashi Inagaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210134544
    Abstract: A direct-current circuit breaker includes a first main circuit breaker inserted into a first direct-current line, a resonance circuit connected in parallel to the first main circuit breaker, a MOSA connected in parallel to the first main circuit breaker via the resonance circuit, a second main circuit breaker inserted into a second direct-current line, a switch connected in series to the second main circuit breaker, a resonance circuit connected in parallel to the second main circuit breaker, and a MOSA connected in parallel to the second main circuit breaker via the resonance circuit. The second direct-current line is a line that branches off from the first direct-current line and returns to the first direct-current line. The switch is inserted upstream of the second direct-current line.
    Type: Application
    Filed: July 11, 2017
    Publication date: May 6, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Takashi INAGAKI, Sho TOKOYODA, Kenji KAMEI, Ryo KIMURA, Makoto MIYASHITA
  • Publication number: 20210111556
    Abstract: A direct-current breaking device includes a main circuit breaker inserted on a DC line, a resonant circuit connected in parallel with the main circuit breaker, and a MOSA connected in parallel with the main circuit breaker via the resonant circuit. The resonant circuit includes first, second, third, and fourth switching elements, a capacitor, and a reactor. A first circuit unit including the first switching element and the second switching element connected in series with each other, and a second circuit unit including the third switching element and the fourth switching element connected in series with each other are connected in parallel. The capacitor is connected between a connection point of the first switching element and the second switching element and a connection point of the third switching element and the fourth switching element to constitute a bridge circuit. The bridge circuit and the reactor are in series with each other.
    Type: Application
    Filed: August 24, 2018
    Publication date: April 15, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Sho TOKOYODA, Takashi INAGAKI, Kenji KAMEI
  • Publication number: 20210070978
    Abstract: A resin composition including: a thermosetting resin component including a mesogen; and a phosphorus atom-containing thermoplastic polymer type frame retardant, wherein the thermoplastic polymer type frame retardant is a phosphorous atom-containing formed by polymerizing or copolymerizing one of monomers represented by general formulae (1) and (2) below, wherein, in the general formulae (1) and (2), each of R1 and R2 is any one of an alkyl group, an alkoxy group, an aryl group and an aryloxy group, R1 and R2 being different or identical, and R3 is a methyl group or a hydrogen atom.
    Type: Application
    Filed: March 4, 2019
    Publication date: March 11, 2021
    Applicant: TDK CORPORATION
    Inventors: Takashi INAGAKI, Junpei HAYAMA
  • Publication number: 20200411271
    Abstract: A DC circuit breaker includes a fuse unit to interrupt a large current with a fuse, and the fuse unit includes a high-speed disconnector that is connected in parallel to the fuse and is opened when a fault current is detected.
    Type: Application
    Filed: April 19, 2018
    Publication date: December 31, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Sho TOKOYODA, Takashi INAGAKI, Kenji KAMEI
  • Publication number: 20200385566
    Abstract: A compound comprises a resin composition containing an epoxy resin, a phenol resin, a wax, and an imidazole compound, and a metal element-containing powder, wherein the epoxy resin comprises a crystalline epoxy resin, the wax comprises a montanic acid ester, and the content of the metal element-containing powder is 90 mass % or more based on the total mass of the compound.
    Type: Application
    Filed: November 30, 2017
    Publication date: December 10, 2020
    Inventors: Kazumasa TAKEUCHI, Chio ISHIHARA, Hideo MAEDA, Masahiko OSAKA, Takashi INAGAKI
  • Publication number: 20200287380
    Abstract: In order to provide a DC interrupting device that does not easily cause erroneous melting of current-limiting fuses at normal times with no fault current, and that can also deliver good current-limiting performance at the time of occurrence of fault current, the DC interrupting device includes: a (k?1)th current path including a (k?1)th current-limiting fuse, where k is an integer of not less than two and not more than N, and N is an integer of not less than two; and a kth current path connected in parallel to the (k?1)th current path and including a kth current-limiting fuse. The inductance value of the inductance component of the kth current path is higher than the inductance value of the inductance component of the (k?1)th current path.
    Type: Application
    Filed: November 9, 2017
    Publication date: September 10, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Motohiro SATO, Katsuhiko HORINOUCHI, Sho TOKOYODA, Takashi INAGAKI
  • Patent number: 10074468
    Abstract: Provided is a powder magnetic core for a reactor, whose electromagnetic properties are difficult to change with time, even when applied to a reactor used in a state that the core is exposed without being potted. The powder magnetic core for a reactor consists essentially of a compact composed of an insulation-coated iron-based soft magnetic powder that an insulating film is formed on the surface of an iron-based soft magnetic powder, and which has such a change with time of 500 hours at 180° C. that a ratio of decrease in effective magnetic permeability being 1% or less. In the compact, the content of gapping between two adjacent particles of the insulation-coated iron-based soft magnetic powder is 2 vol % or less.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: September 11, 2018
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Takashi Inagaki, Chio Ishihara, Noriyuki Nakayama
  • Patent number: 9859044
    Abstract: The powder magnetic core of the present invention can exhibit reliable superposition property in which variance rate of inductance value is small even if superposed current is varied, and can reduce the number of cores used in a reactor. The powder magnetic core comprises: soft magnetic powder particles, and gaps between the soft magnetic powder particles, in which the powder magnetic core has a density ratio of 90 to 95%, and when observing a cross section thereof, layered gaps having thicknesses of 1 to 3 ?m and widths of 20 to 200 ?m are formed inside of the powder magnetic core. It is desirable that the layered gaps be not less than 50% of all the gaps in a cross sectional area ratio.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: January 2, 2018
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Takashi Inagaki, Hiroaki Kondo, Chio Ishihara
  • Patent number: 9762203
    Abstract: A piezoelectric device has: a ceramic substrate having a first principal surface and a second principal surface opposed to each other; a piezoelectric element arranged on the first principal surface; a frame having a first face and a second face opposed to each other and arranged on the ceramic substrate so as to surround the piezoelectric element; a metal layer arranged on the second face of the frame; and a metal lid arranged on the metal layer so as to close a space surrounded by the frame. The first face of the frame is in contact with the first principal surface of the ceramic substrate. The metal layer and the metal lid are joined to each other by resistance welding. The frame has a composite portion containing a metal and a metal oxide and the composite portion includes the second face and is in contact with the metal layer.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: September 12, 2017
    Assignee: TDK CORPORATION
    Inventors: Takeshi Yanata, Yo Saito, Kazuto Takeya, Katsunari Moriai, Takashi Inagaki, Takahiro Itami, Takeshi Oyanagi, Hitoshi Ishida
  • Patent number: 9754710
    Abstract: The compact for a magnetic core is manufactured by filling a soft magnetic powder in the die hole, pressing it to form a compact at a density ratio of the soft magnetic powder being 91% or more, and extruding it from the die hole. Before filling the soft magnetic powder to the die hole, a lubricating coating containing lubricating oil and molybdenum disulfide particles is formed on the inner surface of the die hole. It is more effective when further containing insulating ceramic particles. On the extrusion-sliding surface, the compact has a surface layer of the structure that molybdenum disulfide particles and the insulating ceramic particles are interposed between the soft magnetic powder particles, and insulation of soft magnetic powder particles in the surface layer is not destroyed by extrusion. This provides a powder magnetic core suitable for high frequency application.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: September 5, 2017
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Takashi Inagaki, Chio Ishihara, Noriyuki Nakayama, Jiro Shima
  • Patent number: 9726552
    Abstract: Provided is a piezoelectric device capable of improving measurement precision of a temperature of a piezoelectric element. A piezoelectric device (1) includes a package (2) including a housing member (4) having a thermistor substrate (3) and a frame (7) provided to project from a first main surface (3a) of the thermistor substrate (3) and in which a housing part (6) is formed by the first main surface (3a) and the frame (7) and a lid (9) provided on the frame (7) to cover a space (5) of the housing part (6), and a piezoelectric vibration element (5) provided on the first main surface (3a) of the thermistor substrate (3) in the housing part (6), wherein the thermistor substrate (3) is a multilayer negative temperature coefficient (NTC) thermistor.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: August 8, 2017
    Assignee: TDK CORPORATION
    Inventors: Takeshi Yanata, Yo Saito, Kazuto Takeya, Katsunari Moriai, Takashi Inagaki, Takahiro Itami, Takeshi Oyanagi, Hitoshi Ishida
  • Patent number: 9646756
    Abstract: The present invention provides a powder magnetic core which has a low iron loss and an excellent constancy of magnetic permeability and is suitably used as a core for a reactor mounted on a vehicle. The powder magnetic core is a compact of a mixed powder containing an iron-based soft magnetic powder having an electrical insulating coating formed on its surface and a powder of a low magnetic permeability material having a heat-resistant temperature of 700° C. or higher than 700° C. and a relative magnetic permeability of not more than 1.0000004. The density of the compact is 6.7 Mg/m3 or more, and the low magnetic permeability material exists in the gap among the soft magnetic powder particles in the green compact.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: May 9, 2017
    Assignee: HITACHI POWDERED METALS CO., LTD.
    Inventors: Takashi Inagaki, Chio Ishihara
  • Publication number: 20160293309
    Abstract: The powder magnetic core of the present invention can exhibit reliable superposition property in which variance rate of inductance value is small even if superposed current is varied, and can reduce the number of cores used in a reactor. The powder magnetic core comprises: soft magnetic powder particles, and gaps between the soft magnetic powder particles, in which the powder magnetic core has a density ratio of 90 to 95%, and when observing a cross section thereof, layered gaps having thicknesses of 1 to 3 ?m and widths of 20 to 200 ?m are formed inside of the powder magnetic core. It is desirable that the layered gaps be not less than 50% of all the gaps in a cross sectional area ratio.
    Type: Application
    Filed: November 30, 2015
    Publication date: October 6, 2016
    Applicant: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Takashi INAGAKI, Hiroaki KONDO, Chio ISHIHARA
  • Publication number: 20160240294
    Abstract: The compact for a magnetic core is manufactured by filling a soft magnetic powder in the die hole, pressing it to form a compact at a density ratio of the soft magnetic powder being 91% or more, and extruding it from the die hole. Before filling the soft magnetic powder to the die hole, a lubricating coating containing lubricating oil and molybdenum disulfide particles is formed on the inner surface of the die hole. It is more effective when further containing insulating ceramic particles. On the extrusion-sliding surface, the compact has a surface layer of the structure that molybdenum disulfide particles and the insulating ceramic particles are interposed between the soft magnetic powder particles, and insulation of soft magnetic powder particles in the surface layer is not destroyed by extrusion. This provides a powder magnetic core suitable for high frequency application.
    Type: Application
    Filed: September 25, 2014
    Publication date: August 18, 2016
    Inventors: Takashi INAGAKI, Chio ISHIHARA, Noriyuki NAKAYAMA, Jiro SHIMA
  • Publication number: 20160071637
    Abstract: Provided is a powder magnetic core for a reactor, whose electromagnetic properties are difficult to change with time, even when applied to a reactor used in a state that the core is exposed without being potted. The powder magnetic core for a reactor consists essentially of a compact composed of an insulation-coated iron-based soft magnetic powder that an insulating film is formed on the surface of an iron-based soft magnetic powder, and which has such a change with time of 500 hours at 180° C. that a ratio of decrease in effective magnetic permeability being 1% or less. In the compact, the content of gapping between two adjacent particles of the insulation-coated iron-based soft magnetic powder is 2 vol % or less.
    Type: Application
    Filed: March 27, 2014
    Publication date: March 10, 2016
    Inventors: Takashi INAGAKI, Chio ISHIHARA, Noriyuki NAKAYAMA
  • Publication number: 20150276504
    Abstract: Provided is a piezoelectric device capable of improving measurement precision of a temperature of a piezoelectric element. A piezoelectric device (1) includes a package (2) including a housing member (4) having a thermistor substrate (3) and a frame (7) provided to project from a first main surface (3a) of the thermistor substrate (3) and in which a housing part (6) is formed by the first main surface (3a) and the frame (7) and a lid (9) provided on the frame (7) to cover a space (5) of the housing part (6), and a piezoelectric vibration element (5) provided on the first main surface (3a) of the thermistor substrate (3) in the housing part (6), wherein the thermistor substrate (3) is a multilayer negative temperature coefficient (NTC) thermistor.
    Type: Application
    Filed: March 9, 2015
    Publication date: October 1, 2015
    Inventors: Takeshi YANATA, Yo SAITO, Kazuto TAKEYA, Katsunari MORIAI, Takashi INAGAKI, Takahiro ITAMI, Takeshi OYANAGI, Hitoshi ISHIDA
  • Publication number: 20150249199
    Abstract: A piezoelectric device has: a ceramic substrate having a first principal surface and a second principal surface opposed to each other; a piezoelectric element arranged on the first principal surface; a frame having a first face and a second face opposed to each other and arranged on the ceramic substrate so as to surround the piezoelectric element; a metal layer arranged on the second face of the frame; and a metal lid arranged on the metal layer so as to close a space surrounded by the frame. The first face of the frame is in contact with the first principal surface of the ceramic substrate. The metal layer and the metal lid are joined to each other by resistance welding. The frame has a composite portion containing a metal and a metal oxide and the composite portion includes the second face and is in contact with the metal layer.
    Type: Application
    Filed: January 14, 2015
    Publication date: September 3, 2015
    Inventors: Takeshi YANATA, Yo SAITO, Kazuto TAKEYA, Katsunari MORIAI, Takashi INAGAKI, Takahiro ITAMI, Takeshi OYANAGI, Hitoshi ISHIDA
  • Patent number: 9121601
    Abstract: An insertion-hole blockage-rate evaluation system is applied to a heat exchanger that includes a heat transfer tube and a tube support plate having an insertion hole formed therein for inserting the heat transfer tube therethrough. The tube support plate is displayed in a three dimensional manner in an elliptical diagram with a ratio between a long axis and a short axis being in a range from 1.0 to 2.0 inclusive, each of the tube support plates is serially arranged so as not to overlap on each other, and the insertion-hole blockage-rate evaluation system includes an imaging process of color-coding and displaying the diagram displayed in the three-dimensional elliptical shape according to a value of a blockage rate of the insertion hole acquired by checking the blockage rate of the insertion hole.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: September 1, 2015
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yuji Kohashi, Naoto Kawase, Kayoko Kawata, Takashi Inagaki, Masaharu Michihashi
  • Publication number: 20130101153
    Abstract: An insertion-hole blockage-rate evaluation system is applied to a heat exchanger that includes a heat transfer tube and a tube support plate having an insertion hole formed therein for inserting the heat transfer tube therethrough. The tube support plate is displayed in a three dimensional manner in an elliptical diagram with a ratio between a long axis and a short axis being in a range from 1.0 to 2.0 inclusive, each of the tube support plates is serially arranged so as not to overlap on each other, and the insertion-hole blockage-rate evaluation system includes an imaging process of color-coding and displaying the diagram displayed in the three-dimensional elliptical shape according to a value of a blockage rate of the insertion hole acquired by checking the blockage rate of the insertion hole.
    Type: Application
    Filed: March 23, 2012
    Publication date: April 25, 2013
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yuji KOHASHI, Naoto KAWASE, Kayoko KAWATA, Takashi INAGAKI, Masaharu MICHIHASHI
  • Publication number: 20130056674
    Abstract: A powder magnetic core of the present invention is a powder magnetic core that includes an insulating layer containing a particulate metal oxide between metal powders, in which the insulating layer contains Ca, P, O, Si, and C as elements. According to the present invention, it is possible to provide a powder magnetic core in which securing of a constant permeability characteristic under a high magnetic field and decrease in core loss are compatible with each other, and a method for producing the powder magnetic core.
    Type: Application
    Filed: April 8, 2011
    Publication date: March 7, 2013
    Inventors: Takashi Inagaki, Takehiro Shimoyama, Chio Ishihara, Tetsushi Maruyama