Patents by Inventor Takashi Ko

Takashi Ko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11005090
    Abstract: This non-aqueous electrolyte secondary battery is provided with: a wound electrode body which comprises a positive electrode, a negative electrode and a separator, and wherein the positive electrode and the negative electrode are wound into a roll, with the separator being interposed therebetween; and a non-aqueous electrolyte. The negative electrode comprises a negative electrode collector and a negative electrode mixture layer that is formed on the negative electrode collector. The negative electrode mixture layer contains graphite, a carbon material that has a BET specific surface area of 10 m2/g or more, said BET specific surface area being larger than that of the graphite, and a hydrophobic binder. The coverage of the particle surfaces of the carbon material by the binder is higher than the coverage of the particle surfaces of the graphite by the binder.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: May 11, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kouhei Tuduki, Takashi Ko, Fumiharu Niina, Katsunori Yanagida
  • Publication number: 20210135213
    Abstract: A positive electrode active material for a non-aqueous electrolyte secondary battery according to a configuration includes a lithium-transition metal composite oxide containing nickel (Ni) in an amount of greater than or equal to 80 mol %, in which boron (B) is present at least on a particle surface of the lithium-transition metal composite oxide. In the lithium-transition metal composite oxide, when particles having a larger particle size than a volume-based 70% particle size (D70) are first particles and particles having a smaller particle size than a volume-based 30% particle size (D30) are second particles, a coverage ratio of B on surfaces of the first particles is larger than a coverage ratio of B on surfaces of the second particles by 5% or greater.
    Type: Application
    Filed: October 27, 2020
    Publication date: May 6, 2021
    Applicants: Panasonic Corporation, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Natsumi Goto, Takashi Ko, Shinya Suzuki, Fumiharu Niina, Sho Tsuruta, Ryo Hanazaki
  • Publication number: 20210135214
    Abstract: A positive electrode active material for a non-aqueous electrolyte secondary battery according to a configuration includes a lithium-transition metal composite oxide containing nickel (Ni) in an amount of greater than or equal to 80 mol %, in which boron (B) is present at least on a particle surface of the lithium-transition metal composite oxide. In the lithium-transition metal composite oxide, when particles having a larger particle size than a volume-based 70% particle size (D70) are first particles and particles having a smaller particle size than a volume-based 30% particle size (D30) are second particles, a coverage ratio of B on surfaces of the second particle is larger than a coverage ratio of B on surfaces of the first particle by 5% or greater.
    Type: Application
    Filed: October 27, 2020
    Publication date: May 6, 2021
    Applicants: Panasonic Corporation, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Natsumi Goto, Takashi Ko, Shinya Suzuki, Fumiharu Niina, Sho Tsuruta, Ryo Hanazaki
  • Publication number: 20210098786
    Abstract: An advantage is to provide a non-aqueous electrolyte secondary battery with improved heat resistance. A positive electrode active material contains a lithium-transition metal composite oxide containing 80 mol % or more of Ni and 0.1 mol % to 1.5 mol % of B on the basis of the total number of moles of metal elements excluding Li, and B and at least one element (M1) selected from Groups 4 to 6 are present on at least the surfaces of particles of the composite oxide. When particles having a volume-based particle size larger than 70% particle size (D70) are first particles, and particles having a volume-based particle size smaller than 30% particle size (D30) are second particles, the molar fraction of M1 on the basis of the total number of moles of metallic elements excluding Li on the surfaces of the second particles is greater than that of the first particles.
    Type: Application
    Filed: September 22, 2020
    Publication date: April 1, 2021
    Applicants: Panasonic Corporation, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Ko, Shinya Suzuki, Fumiharu Niina, Sho Tsuruta, Natsumi Goto, Ryo Hanazaki
  • Patent number: 10923713
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode contains a lithium transition metal oxide, at least one element of a group 5 element and group 6 element in the periodic table, and a phosphoric acid compound. The nonaqueous electrolyte contains a lithium salt containing a P—O bond and a P—F bond.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: February 16, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Fumiharu Niina, Takashi Ko, Katsunori Yanagida
  • Patent number: 10910633
    Abstract: A nonaqueous electrolyte secondary battery in which low-crystalline carbon-covered graphite is used as negative electrode active material, wherein a cobalt-containing lithium transitional metal oxide is used for: a first positive electrode active material in which the volume per unit mass of pores having a pore size of 100 nm or less is 8 mm3/g or greater; and a second positive electrode active material in which the volume per unit mass of pores having a pore size of 100 nm or less is 5 mm3/g or less.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: February 2, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takashi Ko, Fumiharu Niina, Katsunori Yanagida, Yasunori Baba, Yuki Morikawa
  • Patent number: 10892472
    Abstract: A non-aqueous electrolyte secondary battery which uses a lithium titanium composite oxide as a negative electrode active material is configured to use a first positive electrode active material that is a Co-containing lithium transition metal oxide and has a volume per mass of 8 mm3/g or more with respect to pores having a pore diameter of 100 nm or less and a second positive electrode active material that has a volume per mass of 5 mm3/g or less with respect to pores having a pore diameter of 100 nm or less.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: January 12, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yuki Morikawa, Yasunori Baba, Takashi Ko, Fumiharu Niina, Katsunori Yanagida
  • Patent number: 10868299
    Abstract: The present invention relates to a non-aqueous electrolyte secondary cell comprising: a positive electrode having a positive electrode mixture layer that contains a first positive-electrode active material and a second positive-electrode active material; a negative electrode containing a lithium-titanium composite oxide as a negative-electrode active material; and a non-aqueous electrolyte. The volume per mass of pores in the first positive-electrode active material having a pore diameter of 100 nm or less is four or more times the volume per mass of pores in the second positive-electrode active material having a pore diameter of 100 nm or less. The content of the first positive-electrode active material is 30 mass % or less with respect to the total amount of the first positive-electrode active material and the second positive-electrode active material.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: December 15, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yasunori Baba, Takashi Ko, Fumiharu Niina, Katsunori Yanagida
  • Publication number: 20200266420
    Abstract: It is an object of the present disclosure to provide a nonaqueous electrolyte secondary battery with improved low-temperature power characteristics. A nonaqueous electrolyte secondary battery includes a positive electrode and a negative electrode. The positive electrode according to the present invention contains a lithium transition metal oxide, at least one element of a group 5 element and group 6 element in the periodic table, and a phosphoric acid compound containing a metal element and hydrogen element.
    Type: Application
    Filed: December 20, 2016
    Publication date: August 20, 2020
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takashi Ko, Fumiharu Niina, Katsunori Yanagida
  • Publication number: 20200152966
    Abstract: A positive electrode including a positive electrode current collector, an intermediate layer disposed on the positive electrode current collector and including a conductive agent and inorganic particles, and a positive electrode mixture layer disposed on the intermediate layer and including a positive electrode active material and a hydrogen phosphate salt represented by the general formula MaHbPO4 (wherein a satisfies 1?a?2, b satisfies 1?b?2, and M includes at least one element selected from alkali metals and alkaline earth metals), the positive electrode satisfying 0.5?X?3.0, 1.0?Y?7.0, and 0.07?X/Y?3.0 wherein X is the mass ratio (mass %) of the hydrogen phosphate salt relative to the total mass of the positive electrode active material and Y is the mass ratio (mass %) of the conductive agent relative to the total mass of the intermediate layer.
    Type: Application
    Filed: September 28, 2018
    Publication date: May 14, 2020
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takashi Ko, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano, Fumiharu Niina
  • Publication number: 20200144606
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode containing a lithium transition metal oxide as a positive electrode active material, a negative electrode containing a carbon material as a negative electrode active material, and a nonaqueous electrolyte. The lithium transition metal oxide contains W and Si, and W and Si adhere to the surface of the carbon material constituting the negative electrode active material. The amount of W adhering to the surface of the carbon material is 2 times or less in terms of a molar ratio to the amount of Si adhering to the surface of the carbon material.
    Type: Application
    Filed: February 9, 2018
    Publication date: May 7, 2020
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Fumiharu NIINA, Takashi KO, Katsunori YANAGIDA
  • Publication number: 20200067074
    Abstract: This non-aqueous electrolyte secondary battery is provided with: a wound electrode body which comprises a positive electrode, a negative electrode and a separator, and wherein the positive electrode and the negative electrode are wound into a roll, with the separator being interposed therebetween; and a non-aqueous electrolyte. The negative electrode comprises a negative electrode collector and a negative electrode mixture layer that is formed on the negative electrode collector. The negative electrode mixture layer contains graphite, a carbon material that has a BET specific surface area of 10 m2/g or more, said BET specific surface area being larger than that of the graphite, and a hydrophobic binder. The coverage of the particle surfaces of the carbon material by the binder is higher than the coverage of the particle surfaces of the graphite by the binder.
    Type: Application
    Filed: December 4, 2017
    Publication date: February 27, 2020
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Kouhei Tuduki, Takashi Ko, Fumiharu Niina, Katsunori Yanagida
  • Publication number: 20200014023
    Abstract: A nonaqueous electrolyte secondary battery in which low-crystalline carbon-covered graphite is used as a negative electrode active material, wherein a cobalt-containing lithium transitional metal oxide is used for: a first positive electrode active material in which the volume per unit mass of pores having a pore size of 100 nm or less is 8 mm3/g or greater; and a second positive electrode active material in which the volume per unit mass of pores having a pore size of 100 nm or less is 5 mm3/g or less.
    Type: Application
    Filed: January 26, 2018
    Publication date: January 9, 2020
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takashi Ko, Fumiharu Niina, Katsunori Yanagida, Yasunori Baba, Yuki Morikawa
  • Publication number: 20190305291
    Abstract: A non-aqueous electrolyte secondary battery which uses a lithium titanium composite oxide as a negative electrode active material is configured to use a first positive electrode active material that is a Co-containing lithium transition metal oxide and has a volume per mass of 8 mm3/g or more with respect to pores having a pore diameter of 100 nm or less and a second positive electrode active material that has a volume per mass of 5 mm3/g or less with respect to pores having a pore diameter of 100 nm or less.
    Type: Application
    Filed: December 11, 2017
    Publication date: October 3, 2019
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yuki Morikawa, Yasunori Baba, Takashi Ko, Fumiharu Niina, Katsunori Yanagida
  • Publication number: 20190245200
    Abstract: The present invention relates to a non-aqueous electrolyte secondary cell comprising: a positive electrode having a positive electrode mixture layer that contains a first positive-electrode active material and a second positive-electrode active material; a negative electrode containing a lithium-titanium composite oxide as a negative-electrode active material; and a non-aqueous electrolyte. The volume per mass of pores in the first positive-electrode active material having a pore diameter of 100 nm or less is four or more times the volume per mass of pores in the second positive-electrode active material having a pore diameter of 100 nm or less. The content of the first positive-electrode active material is 30 mass % or less with respect to the total amount of the first positive-electrode active material and the second positive-electrode active material.
    Type: Application
    Filed: October 19, 2017
    Publication date: August 8, 2019
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yasunori Baba, Takashi Ko, Fumiharu Niina, Katsunori Yanagida
  • Publication number: 20180366724
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode contains a lithium transition metal oxide, at least one element of a group 5 element and group 6 element in the periodic table, and a phosphoric acid compound. The nonaqueous electrolyte contains a lithium salt containing a P—O bond and a P—F bond.
    Type: Application
    Filed: December 19, 2016
    Publication date: December 20, 2018
    Applicant: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Fumiharu Niina, Takashi Ko, Katsunori Yanagida