Patents by Inventor Takashi Kuboki

Takashi Kuboki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130280586
    Abstract: According to one embodiment, a non-aqueous electrolyte battery includes an outer case, a negative electrode, a positive electrode including a current collector and a positive electrode layer formed on surface of the current collector and opposed to the negative electrode layer, and a non-aqueous electrolyte, wherein the positive electrode layer includes a layered lithium nickel cobalt manganese composite oxide and a lithium cobalt composite oxide, the positive electrode layer has a pore volume with a pore diameter of 0.01 to 1.0 ?m, the pore volume being 0.06 to 0.25 mL per 1 g of a weight of the positive electrode layer, and a pore surface area within the pore volume range is 2.4 to 8 m2/g.
    Type: Application
    Filed: June 18, 2013
    Publication date: October 24, 2013
    Inventors: Yoshiyuki ISOZAKI, Hidesato Saruwatari, Yoshinao Tatebayashi, Takashi Kuboki, Norio Takami
  • Publication number: 20130244103
    Abstract: An electrode for a nonaqueous electrolyte secondary battery of an embodiment includes: a current collector; and an active material layer including an active material and a binder, formed on the current collector, wherein the binder includes at least an olefin based polymer and a fatty acid, and the fatty acid has a melting point of 25° C. or less and a boiling point of 100° C. or more.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 19, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Miho Muramatsu, Tomokazu Morita, Takashi Kuboki, Norio Takami
  • Patent number: 8506913
    Abstract: An acidic gas absorbent having a high acidic gas absorption capacity, that is, a high acidic gas absorption amount and a high acidic gas absorption rate, an acidic gas absorption device, and a method for absorbing an acidic gas, are provided. An acidic gas absorbent containing an azabicyclo compound and a primary or secondary amine compound; an acidic gas absorbent containing a heteroaromatic ring compound and a primary or secondary amine compound; an acidic gas removal device using these acidic gas absorbents; and a method for removing an acidic gas are disclosed.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: August 13, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Murai, Satoshi Saito, Yasuhiro Kato, Takehiko Muramatsu, Takashi Kuboki, Hiroko Watando, Asato Kondo, Yukishige Maezawa
  • Publication number: 20130078490
    Abstract: According to one embodiment, a negative electrode active material for a non-aqueous electrolyte secondary battery cell includes a composite. The composite includes a carbonaceous material, a silicon oxide dispersed in the carbonaceous material, and a silicon dispersed in the silicon oxide. A half-value width of a diffraction peak of a Si (220) plane in powder X-ray diffraction measurement of the composite is in a range of 1.5° to 8.0°. A mean size of a silicon oxide phase is in a range of 50 nm to 1,000 nm. A value of (a standard deviation)/(the mean size) is equal to or less than 1.0 where the standard deviation of a size distribution of the silicon oxide phase is defined by (d84%?d16%)/2.
    Type: Application
    Filed: June 27, 2012
    Publication date: March 28, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomokazu MORITA, Norio Takami, Takashi Kuboki
  • Patent number: 8349503
    Abstract: A nonaqueous electrolyte battery, including a case, a positive electrode housed in the case, a negative electrode housed in the case, and a nonaqueous electrolyte containing an ionic liquid and lithium ions of which molar amount is no smaller than 1.8×10?5 mol per mAh of the battery capacity.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: January 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hidesato Saruwatari, Takashi Kishi, Takashi Kuboki, Norio Takami
  • Publication number: 20120305840
    Abstract: An object of the present invention is to provide a carbon dioxide absorbing solution capable of avoiding precipitation of a product formed by the reaction with carbon dioxide. The absorbing solution is an aqueous solution characterized by containing an amino acid salt comprising at least one carboxylic acid salt connected to a heterocyclic ring including at least one nitrogen atom as the ring member atom.
    Type: Application
    Filed: September 24, 2009
    Publication date: December 6, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shinji Murai, Satoshi Saito, Takehiko Muramatsu, Yukishige Maezawa, Takashi Kuboki, Yasuhiro Kato, Reiko Yoshimura, Hiroko Watando, Asato Kondo
  • Publication number: 20120294785
    Abstract: An acidic gas absorbent having a high acidic gas absorption capacity, that is, a high acidic gas absorption amount and a high acidic gas absorption rate, an acidic gas absorption device, and a method for absorbing an acidic gas, are provided. An acidic gas absorbent containing an azabicyclo compound and a primary or secondary amine compound; an acidic gas absorbent containing a heteroaromatic ring compound and a primary or secondary amine compound; an acidic gas removal device using these acidic gas absorbents; and a method for removing an acidic gas are disclosed.
    Type: Application
    Filed: March 29, 2010
    Publication date: November 22, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shinji Murai, Satoshi Saito, Yasuhiro Kato, Takehiko Muramatsu, Takashi Kuboki, Hiroko Watando, Asato Kondo, Yukishige Maezawa
  • Publication number: 20120270093
    Abstract: According to one embodiment, a non-aqueous electrolyte battery includes an outer case, a negative electrode, a positive electrode including a current collector and a positive electrode layer formed on surface of the current collector and opposed to the negative electrode layer, and a non-aqueous electrolyte, wherein the positive electrode layer includes a layered lithium nickel cobalt manganese composite oxide and a lithium cobalt composite oxide, the positive electrode layer has a pore volume with a pore diameter of 0.01 to 1.0 ?m, the pore volume being 0.06 to 0.25 mL per 1 g of a weight of the positive electrode layer, and a pore surface area within the pore volume range is 2.4 to 8 m2/g.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 25, 2012
    Inventors: Yoshiyuki ISOZAKI, Hidesato SARUWATARI, Yoshinao TATEBAYASHI, Takashi KUBOKI, Norio TAKAMI
  • Publication number: 20120214044
    Abstract: A secondary battery includes a positive electrode, a negative electrode containing a metal compound having a lithium ion absorption potential of 0.2V (vs.Li/Li+) or more, a separator and a nonaqueous electrolyte. The separator is provided between the positive electrode and the negative electrode. The separator comprises cellulose fibers and pores having a specific surface area of 5 to 15 m2/g. The separator has a porosity of 55 to 80%, and a pore diameter distribution having a first peak in a pore diameter range of 0.2 ?m (inclusive) to 2 ?m (exclusive) and a second peak in a pore diameter range of 2 to 30 ?m.
    Type: Application
    Filed: May 3, 2012
    Publication date: August 23, 2012
    Inventors: Norio Takami, Hiroki Inagaki, Takashi Kuboki
  • Publication number: 20120208096
    Abstract: According to one embodiment, an air battery includes a case, a positive electrode, a negative electrode, a first nonaqueous electrolyte, a second nonaqueous electrolyte, a solid electrolyte layer and a hole. The first nonaqueous electrolyte is permeated into the positive electrode and includes an ionic liquid. The second nonaqueous electrolyte is permeated into the negative electrode and includes an organic solvent. The solid electrolyte layer is provided between the positive electrode and the negative electrode and has lithium ion conductivity.
    Type: Application
    Filed: April 25, 2012
    Publication date: August 16, 2012
    Inventors: Takashi Kuboki, Norio Takami
  • Publication number: 20120161071
    Abstract: An acid gas absorbent of which recovery amount of acid gas such as carbon dioxide is high, and an acid gas removal device and an acid gas removal method using the acid gas absorbent are provided. The acid gas absorbent of the embodiment comprising at least one type of tertiary amine compound represented by the following general formula (1). (In the above-stated formula (1), either one of the R1, R2 represents a substituted or non-substituted alkyl group of which carbon number is 2 to 5, and the other one represents a substituted or non-substituted alkyl group of which carbon number is 1 to 5. The R3 represents a methyl group or an ethyl group, and the R4 represents a hydroxyalkyl group. The R1, R2 may either be the same or different, and they may be coupled to form a cyclic structure.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 28, 2012
    Inventors: Shinji MURAI, Yukishige Maezawa, Yasuhiro Kato, Takehiko Muramatsu, Satoshi Saito, Hiroko Watando, Naomi Shida, Reiko Yoshimura, Takashi Kuboki
  • Patent number: 8192859
    Abstract: A secondary battery includes a positive electrode, a negative electrode containing a metal compound having a lithium ion absorption potential of 0.2V (vs.Li/Li+) or more, a separator and a nonaqueous electrolyte. The separator is provided between the positive electrode and the negative electrode. The separator comprises cellulose fibers and pores having a specific surface area of 5 to 15 m2/g. The separator has a porosity of 55 to 80%, and a pore diameter distribution having a first peak in a pore diameter range of 0.2 ?m (inclusive) to 2 ?m (exclusive) and a second peak in a pore diameter range of 2 to 30 ?m.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: June 5, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Norio Takami, Hiroki Inagaki, Takashi Kuboki
  • Patent number: 7965062
    Abstract: It is made possible to keep a nonaqueous electrolyte secondary battery in a charged state for a long period of time and minimize the degradation of the battery. A method for charging a nonaqueous electrolyte secondary battery including a cathode, an anode, and a nonaqueous electrolyte, includes: a first charging step of charging the nonaqueous electrolyte secondary battery at a first current value which increases the voltage of the nonaqueous electrolyte secondary battery; and a second charging step of charging the nonaqueous electrolyte secondary battery at a second current value which decreases the voltage of the nonaqueous electrolyte secondary battery. These two charging steps are repeated alternately.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: June 21, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kishi, Takashi Kuboki
  • Patent number: 7883797
    Abstract: A non-aqueous electrolyte battery that contains a molten salt electrolyte and has the enhanced output performances and cycle performances can be provided. The electrolyte has a molar ratio of lithium salt to molten salt of from 0.3 to 0.5, and the non-aqueous electrolyte battery has a positive electrode having a discharge capacity of 1.05 or more times that of a negative electrode thereof.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: February 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kishi, Takashi Kuboki, Hidesato Saruwatari, Norio Takami
  • Patent number: 7833677
    Abstract: This invention provides a nonaqueous electrolyte battery that has excellent output characteristics, is small in individual difference, and is more stable. The nonaqueous electrolyte battery comprises a negative electrode and a positive electrode that contain or can occlude and release lithium, a lithium salt-containing ionic liquid and is characterized in that the electrolyte contains a cation containing a fluoroalkyl group attached through a methylene chain to a basic structure selected from the group consisting of imidazolium, piperidinium, and pyrrolidinium structures.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: November 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kishi, Takashi Kuboki, Satoshi Mikoshiba
  • Patent number: 7825634
    Abstract: A charge accumulating system of the present invention comprises a nonaqueous electrolyte battery unit including a nonaqueous electrolyte containing an ionic liquid, a negative electrode and a positive electrode, a temperature detector which detects an ambient temperature of the battery unit, a first controller which lowers a maximum battery voltage of the battery unit when the detected temperature from the temperature detector exceeds a standard ambient temperature, and a second controller which controls a maximum charging amount Qmax of the nonaqueous electrolyte battery unit at a constant level, or lowers the maximum charging amount Qmax when the detected temperature from the temperature detector exceeds the standard ambient temperature.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: November 2, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kishi, Takashi Kuboki, Tsuyoshi Kobayashi
  • Patent number: 7682736
    Abstract: An electrochemical device includes a case, a nonaqueous electrolyte filled in the case and containing a room temperature molten salt in an amount of 1 to 50 vol %, a first electrode housed in the case, and a second electrode housed in the case and containing a substance having a lamellar crystal structure. The room temperature molten salt contains a cation represented by formula (1) or formula (2) given below. R1 includes a carbonic acid ester group. Each of R2 and R3 denotes a substituent having an acyclic structure and having 4 or less carbon atoms, or R2 and R3 are combined to denote a substituent having a cyclic structure and having 4 or 5 carbon atoms. R4 includes a carbonic acid ester group, R5 has an acyclic structure and has 4 or less carbon atoms, and R6 denotes a hydrogen atom or a methyl group.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: March 23, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kuboki, Norio Takami
  • Publication number: 20090081534
    Abstract: A secondary battery includes a positive electrode, a negative electrode containing a metal compound having a lithium ion absorption potential of 0.2V (vs.Li/Li+) or more, a separator and a nonaqueous electrolyte. The separator is provided between the positive electrode and the negative electrode. The separator comprises cellulose fibers and pores having a specific surface area of 5 to 15 m2/g. The separator has a porosity of 55 to 80%, and a pore diameter distribution having a first peak in a pore diameter range of 0.2 ?m (inclusive) to 2 ?m (exclusive) and a second peak in a pore diameter range of 2 to 30 ?m.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 26, 2009
    Inventors: Norio Takami, Hiroki Inagaki, Takashi Kuboki
  • Publication number: 20080231237
    Abstract: It is made possible to keep a nonaqueous electrolyte secondary battery in a charged state for a long period of time and minimize the degradation of the battery. A method for charging a nonaqueous electrolyte secondary battery including a cathode, an anode, and a nonaqueous electrolyte, includes: a first charging step of charging the nonaqueous electrolyte secondary battery at a first current value which increases the voltage of the nonaqueous electrolyte secondary battery; and a second charging step of charging the nonaqueous electrolyte secondary battery at a second current value which decreases the voltage of the nonaqueous electrolyte secondary battery. These two charging steps are repeated alternately.
    Type: Application
    Filed: February 19, 2008
    Publication date: September 25, 2008
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kishi, Takashi Kuboki
  • Patent number: 7419744
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The negative electrode contains an active material providing a working potential which is nobler by at least 0.5V than a lithium metal potential. Also, the nonaqueous electrolyte contains an ionic liquid and allyl phosphate represented by chemical formula given below: where R denotes hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and n denotes an integer of 1 to 3.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: September 2, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kishi, Hidesato Saruwatari, Takashi Kuboki