Patents by Inventor Takashi Okazoe

Takashi Okazoe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9796655
    Abstract: The present invention relates to a production process capable of selectively producing various kinds of carbonate compounds without restraint in high yields without using toxic compounds such as phosgene and crown ethers, without producing corrosive gases such as hydrogen chloride as a by-product, and without necessity of removing the chloroform as a by-product by distillation, and to a method for producing a carbonate compound, containing reacting compound (1) with a compound having an OH group in the presence of a metal salt and 0.2 to 4.0 mol of compound (2) per mol of the metal salt to obtain a carbonate compound, in which m is an integer of 1-10, Q is an alkylene group having 1 to 4 carbon atoms, etc, and R10 and R11 are alkyl groups having 1 to 5 carbon atoms, etc.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: October 24, 2017
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hidekazu Okamoto, Atsushi Fujimori, Takashi Okazoe
  • Patent number: 9617379
    Abstract: The present invention relates to a method for producing a carbonate compound and methacrylic acid or an ester thereof, containing a step (a1) of obtaining hexachloroacetone and hydrogen chloride from acetone and chlorine molecule, a step (a2) of obtaining a dialkyl carbonate and chloroform from hexachloroacetone and an alkyl alcohol, a step (b1) of obtaining 1,1,1-trichloro-2-methyl-2-propanol from chloroform and acetone, a step (b2+b3 or b4) of obtaining methacrylic acid or an ester thereof and hydrogen chloride from 1,1,1-trichloro-2-methyl-2-propanol and water or an alcohol, and a step (c1 or c2) of obtaining chlorine molecule by reacting hydrogen chloride with oxygen molecule.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: April 11, 2017
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Takashi Okazoe, Masayuki Miyazaki, Kazuya Oharu, Tomoyuki Fujita, Shinji Wada, Koichi Murata, Naoko Shirota
  • Publication number: 20160347905
    Abstract: The present invention relates to a method for producing a carbonate compound and methacrylic acid or an ester thereof, containing a step (a1) of obtaining hexachloroacetone and hydrogen chloride from acetone and chlorine molecule, a step (a2) of obtaining a dialkyl carbonate and chloroform from hexachloroacetone and an alkyl alcohol, a step (b1) of obtaining 1,1,1-trichloro-2-methyl-2-propanol from chloroform and acetone, a step (b2+b3 or b4) of obtaining methacrylic acid or an ester thereof and hydrogen chloride from 1,1,1-trichloro-2-methyl-2-propanol and water or an alcohol, and a step (c1 or c2) of obtaining chlorine molecule by reacting hydrogen chloride with oxygen molecule.
    Type: Application
    Filed: August 11, 2016
    Publication date: December 1, 2016
    Applicant: Asahi Glass Company, Limited
    Inventors: Takashi OKAZOE, Masayuki MIYAZAKI, Kazuya OHARU, Tomoyuki FUJITA, Shinji WADA, Koichi MURATA, Naoko SHIROTA
  • Patent number: 9447235
    Abstract: The present invention relates to a method of producing polycarbonate containing following step (a) and step (b), (a) a step of reacting a specific fluorine-containing carbonate (Compound (1), etc.) and an aromatic dihydroxy compound in the presence of a condensation catalyst, to obtain a prepolymer, and (b) a step of heating the prepolymer at a temperature which is lower than a melting temperature of the prepolymer and performing solid phase polymerization on the prepolymer while a fluorine-containing alcohol that is produced as a by-product is discharged out of a system, to obtain a polycarbonate.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: September 20, 2016
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Naoko Shirota, Takashi Okazoe, Kimiaki Kashiwagi
  • Patent number: 9260383
    Abstract: The present invention relates to a method of producing a carbamate compound, comprising reacting a fluorine-containing carbonic diester compound represented by formula (1) and a non-aromatic diamine compound represented by formula (2) without using a catalyst, to thereby produce a carbamate compound represented by formula (3), and a method of producing an isocyanate compound represented by formula (20) from the carbamate compound without using a catalyst, wherein R represents a fluorine-containing monovalent aliphatic hydrocarbon group, and A represents a divalent aliphatic hydrocarbon group, a divalent alicyclic hydrocarbon group or a divalent aromatic-aliphatic hydrocarbon group.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: February 16, 2016
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Takashi Okazoe, Yuko Nagasaki, Hidekazu Okamoto
  • Publication number: 20160032046
    Abstract: The present invention relates to a method of producing polycarbonate containing following step (a) and step (b), (a) a step of reacting a specific fluorine-containing carbonate (Compound (1), etc.) and an aromatic dihydroxy compound in the presence of a condensation catalyst, to obtain a prepolymer, and (b) a step of heating the prepolymer at a temperature which is lower than a melting temperature of the prepolymer and performing solid phase polymerization on the prepolymer while a fluorine-containing alcohol that is produced as a by-product is discharged out of a system, to obtain a polycarbonate.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Naoko SHIROTA, Takashi Okazoe, Kimiaki Kashiwagi
  • Patent number: 9238612
    Abstract: The present invention relates to a method for producing an unsaturated acid and/or an unsaturated acid ester, containing a process A of reacting a compound (1) represented by the following formula (1) at a temperature of 0° C. to 350° C. in the presence of a Brønsted acid catalyst and/or a Lewis acid catalyst, to prepare a compound (2) represented by the following formula (2); in which each of R1, R2 and R4 independently represents a hydrogen atom, a deuterium atom or an alkyl group; each of R3 and R5 independently represents a hydrogen atom or a deuterium atom; R6 represents a hydrogen atom, a deuterium atom, or an alkyl group or an aryl group; and X represents a chlorine atom, a fluorine atom, a bromine atom, or an iodine atom.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: January 19, 2016
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Tomoyuki Fujita, Shinji Wada, Takashi Okazoe, Koichi Murata
  • Publication number: 20150284314
    Abstract: The present invention relates to a production process capable of selectively producing various kinds of carbonate compounds without restraint in high yields without using toxic compounds such as phosgene and crown ethers, without producing corrosive gases such as hydrogen chloride as a by-product, and without necessity of removing the chloroform as a by-product by distillation, and to a method for producing a carbonate compound, containing reacting compound (1) with a compound having an OH group in the presence of a metal salt and 0.2 to 4.0 mol of compound (2) per mol of the metal salt to obtain a carbonate compound, in which m is an integer of 1-10, Q is an alkylene group having 1 to 4 carbon atoms, etc, and R10 and R11 are alkyl groups having 1 to 5 carbon atoms, etc.
    Type: Application
    Filed: June 4, 2015
    Publication date: October 8, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Hidekazu OKAMOTO, Atsushi FUJIMORI, Takashi OKAZOE
  • Publication number: 20150175520
    Abstract: The present invention relates to a method for producing an unsaturated acid and/or an unsaturated acid ester, containing a process A of reacting a compound (1) represented by the following formula (1) at a temperature of 0° C. to 350° C. in the presence of a Brønsted acid catalyst and/or a Lewis acid catalyst, to prepare a compound (2) represented by the following formula (2); in which each of R1, R2 and R4 independently represents a hydrogen atom, a deuterium atom or an alkyl group; each of R3 and R5 independently represents a hydrogen atom or a deuterium atom; R6 represents a hydrogen atom, a deuterium atom, or an alkyl group or an aryl group; and X represents a chlorine atom, a fluorine atom, a bromine atom, or an iodine atom.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 25, 2015
    Inventors: Tomoyuki FUJITA, Shinji WADA, Takashi OKAZOE, Koichi MURATA
  • Publication number: 20150087854
    Abstract: The present invention relates to a method of producing a carbamate compound, comprising reacting a fluorine-containing carbonic diester compound represented by formula (1) and a non-aromatic diamine compound represented by formula (2) without using a catalyst, to thereby produce a carbamate compound represented by formula (3), and a method of producing an isocyanate compound represented by formula (20) from the carbamate compound without using a catalyst, wherein R represents a fluorine-containing monovalent aliphatic hydrocarbon group, and A represents a divalent aliphatic hydrocarbon group, a divalent alicyclic hydrocarbon group or a divalent aromatic-aliphatic hydrocarbon group.
    Type: Application
    Filed: November 26, 2014
    Publication date: March 26, 2015
    Inventors: Takashi OKAZOE, Yuko Nagasaki, Hidekazu Okamoto
  • Patent number: 8927756
    Abstract: The present invention relates to a method of producing a carbamate compound, comprising reacting a fluorine-containing carbonic diester compound represented by formula (1) and a non-aromatic diamine compound represented by formula (2) without using a catalyst, to thereby produce a carbamate compound represented by formula (3), and a method of producing an isocyanate compound represented by formula (20) from the carbamate compound without using a catalyst, wherein R represents a fluorine-containing monovalent aliphatic hydrocarbon group, and A represents a divalent aliphatic hydrocarbon group, a divalent alicyclic hydrocarbon group or a divalent aromatic-aliphatic hydrocarbon group.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: January 6, 2015
    Assignee: Asahi Glass Company, Limited
    Inventors: Takashi Okazoe, Yuko Nagasaki, Hidekazu Okamoto
  • Patent number: 8703899
    Abstract: The present invention relates to a method for producing a polyester, containing conducting a transesterification reaction of at least one compound selected from compounds represented by the following formulae (1) to (3) with a diol compound in the presence of a catalyst: wherein Ar is a divalent aromatic hydrocarbon group or the like; R1 is CX1Y1R4; R2 is a hydrogen atom or CX2Y2R5; R3 is a hydrogen atom or CX3Y3R6; R7 is a perfluoroalkylene group having 1 to 5 carbon atoms; X1 to X3 are a hydrogen atom, a fluorine atom or Rf; Y1 to Y3 are a fluorine atom or Rf; R4 to R6 are a fluorine atom, Rf, ORf or the like; and Rf is a fluoroalkyl group having 1 to 4 carbon atoms.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: April 22, 2014
    Assignee: Asashi Glass Company Limited
    Inventors: Jumpei Nomura, Hidekazu Okamoto, Atsushi Fujimori, Takashi Okazoe
  • Publication number: 20130345387
    Abstract: The present invention relates to a method for producing a polyester, containing conducting a transesterification reaction of at least one compound selected from compounds represented by the following formulae (1) to (3) with a diol compound in the presence of a catalyst: wherein Ar is a divalent aromatic hydrocarbon group or the like; R1 is CX1Y1R4; R2 is a hydrogen atom or CX2Y2R5; R3 is a hydrogen atom or CX3Y3R6; R7 is a perfluomalkylene group having 1 to 5 carbon atoms; X1 to X3 are a hydrogen atom, a fluorine atom or Rf; Y1 to Y3 are a fluorine atom or Rf; R4 to R6 are a fluorine atom, Rf, ORf or the like; and Rf is a fluoroalkyl group having 1 to 4 carbon atoms.
    Type: Application
    Filed: August 30, 2013
    Publication date: December 26, 2013
    Applicant: Asahi Glass Company, Limited
    Inventors: Jumpei Nomura, Hidekazu Okamoto, Atsushi Fujimori, Takashi Okazoe
  • Patent number: 8395001
    Abstract: To provide processes for efficiently and economically producing 2-chloro-1,1,1,2-tetrafluoropropane (R244bb) and 2,3,3,3-tetrafluoropropene (R1234yf) in an industrially practical manner. A process for producing 2-chloro-1,1,1,2-tetrafluoropropane, which comprises a chlorination step of reacting 1,2-dichloro-2-fluoropropane and chlorine in the presence of a solvent under irradiation with light to obtain 1,1,1,2-tetrachloro-2-fluoropropane, and a fluorination step of reacting the 1,1,1,2-tetrachloro-2-fluoropropane obtained in the chlorination step and hydrogen fluoride in the presence of a catalyst to obtain 2-chloro-1,1,1,2-tetrafluoropropane, and a process for producing 2,3,3,3-tetrafluoropropene, which comprises dehydrochlorinating it in the presence of a catalyst.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 12, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Satoshi Kawaguchi, Takashi Okazoe, Hidekazu Okamoto
  • Publication number: 20130023691
    Abstract: The present invention relates to a method of producing a carbamate compound, comprising reacting a fluorine-containing carbonic diester compound represented by formula (1) and a non-aromatic diamine compound represented by formula (2) without using a catalyst, to thereby produce a carbamate compound represented by formula (3), and a method of producing an isocyanate compound represented by formula (20) from the carbamate compound without using a catalyst, wherein R represents a fluorine-containing monovalent aliphatic hydrocarbon group, and A represents a divalent aliphatic hydrocarbon group, a divalent alicyclic hydrocarbon group or a divalent aromatic-aliphatic hydrocarbon group.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 24, 2013
    Inventors: Takashi Okazoe, Yuko Nagasaki, Hidekazu Okamoto
  • Publication number: 20120226011
    Abstract: The present invention relates to a method for producing a polycarbonate, containing melt-polycondensing a diol component containing a compound represented by the following formula (1) with a fluorine-containing carbonate: here, R1 and R2 are each independently hydrogen atom, C1-10 alkyl group, C6-10 cycloalkyl group, or C6-10 aryl group, and two of R1's and two of R2's may mutually be the same or different; X is C1-6 alkylene group, C6-10 cycloalkylene group, or C6-10 arylene group, and a plurality of X's may be the same or different; and m and n are each independently an integer of from 1 to 5.
    Type: Application
    Filed: May 16, 2012
    Publication date: September 6, 2012
    Inventors: Jumpei NOMURA, Hidekazu OKAMOTO, Takashi OKAZOE
  • Publication number: 20120148818
    Abstract: A fluorine-containing copolymer, containing: chlorotrifluoroethylene monomer units (A); and monomer units (B), which are obtained by polymerizing a monomer selected from the group consisting of (i) a monomer having a formula: CH2?CHCOON(R0)2, wherein each R0 is independently a hydrogen or an alkyl group; (ii) N-vinylcaprolactam; (iii) a monomer having a formula: CH2?CR1CH2OCH2CR2?CH2, wherein R1 and R2 are each independently a hydrogen, a fluorine, or a methyl group; (iv) a monomer having a formula: CH2?CHCH2CH(CH3)—R3, wherein R3 is a linear alkyl group comprising 1 to 7 carbons; and (v) a monomer of methyl 2-fluoroacrylate, wherein a ratio, (A)/((A)+(B)), is from 3 to 99 mol %, a fluorine content of the copolymer is from 15 to 75 mol %, and a molecular weight of the copolymer is from 1,000 to 1,000,000.
    Type: Application
    Filed: January 31, 2012
    Publication date: June 14, 2012
    Applicant: ASAHI GLASS COMPANY LIMITED
    Inventors: Safir L. ADAM, Song Li, Shinji Okada, Nobuyuki Kasahara, Katsuya Ueno, Yoshitomi Morizawa, Takashi Okazoe
  • Publication number: 20110237846
    Abstract: To provide processes for efficiently and economically producing 2-chloro-1,1,1,2-tetrafluoropropane (R244bb) and 2,3,3,3-tetrafluoropropene (R1234yf) in an industrially practical manner. A process for producing 2-chloro-1,1,1,2-tetrafluoropropane, which comprises a chlorination step of reacting 1,2-dichloro-2-fluoropropane and chlorine in the presence of a solvent under irradiation with light to obtain 1,1,1,2-tetrachloro-2-fluoropropane, and a fluorination step of reacting the 1,1,1,2-tetrachloro-2-fluoropropane obtained in the chlorination step and hydrogen fluoride in the presence of a catalyst to obtain 2-chloro-1,1,1,2-tetrafluoropropane, and a process for producing 2,3,3,3-tetrafluoropropene, which comprises dehydrochlorinating it in the presence of a catalyst.
    Type: Application
    Filed: June 10, 2011
    Publication date: September 29, 2011
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Satoshi KAWAGUCHI, Takashi OKAZOE, Hidekazu OKAMOTO
  • Publication number: 20100249436
    Abstract: The present invention is to provide a novel production process capable of selectively producing various kinds of carbonate compounds without any inhibition in high yields without using phosgene and without producing hydrogen chloride as a by-product. The present invention relates to a process for producing a compound having a carbonate bond by reacting a compound (1) with a compound having one OH group or a compound having two or more OH groups in the presence of a halogen salt. In the formula (1) shown below, X1 to X6 each represents a hydrogen atom or a halogen atom, at least one of X1 to X3 is a halogen atom, and at least one of X4 to X6 is a halogen atom.
    Type: Application
    Filed: June 2, 2010
    Publication date: September 30, 2010
    Inventors: Hidekazu OKAMOTO, Kouhei Tajima, Takashi Okazoe
  • Patent number: RE41806
    Abstract: The present invention provides a process whereby fluorine atom-containing sulfonyl fluoride compound(s) useful as e.g. materials for ion-exchange membranes, can be produced efficiently and at low cost without structural limitations while solving the difficulties in production. Namely, the present invention provides a process which comprises reacting XSO2RA-E1 (1) with RB-E2 (2) to form XSO2R4-E-RB (3), then reacting (3) with fluorine in a liquid phase to form FSO2RAF-EF-RBF (4), and further, decomposing the compound to obtain FSO2RAF-EFl (5), wherein RA is a bivalent organic group, E1 is a monovalent reactive group, RB is a monovalent organic group, E2 is a monovalent reactive group which is reactive with E1, E is a bivalent connecting group formed by the reaction of E1 with E2, RAF is a bivalent organic group formed by the fluorination of RA, etc., RBF is the same group as RB, etc., EF1 is a bivalent connecting group formed by the fluorination of E, etc.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: October 5, 2010
    Assignee: Asahi Glass Company, Limited
    Inventors: Masahiro Ito, Kunio Watanabe, Takashi Okazoe, Isamu Kaneko, Daisuke Shirakawa