Patents by Inventor Takashi Takenaga

Takashi Takenaga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8518562
    Abstract: A magnetic storage device stable in write characteristic is provided. A first nonmagnetic film is provided over a recording layer. A first ferromagnetic film is provided over the first nonmagnetic film and has a first magnetization and a first film thickness. A second nonmagnetic film is provided over the first ferromagnetic film. A second ferromagnetic film is provided over the second nonmagnetic film, is coupled in antiparallel with the first ferromagnetic film, and has a second magnetization and a second film thickness. An antiferromagnetic film is provided over the second ferromagnetic film. The sum of the product of the first magnetization and the first film thickness and the product of the second magnetization and the second film thickness is smaller than the product of the magnetization of the recording layer and the film thickness of the recording layer.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: August 27, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Takenaga, Takeharu Kuroiwa, Hiroshi Takada, Ryoji Matsuda, Yosuke Takeuchi
  • Patent number: 8492881
    Abstract: A magnetic storage device which enables stable operation at the time of recording information into MRAM and the stable retention of recorded information. The die of the magnetic storage device has a substrate, first and second wirings, a magnetic storage element and a first magnetic shielding structure. The first magnetic shielding structure is formed to cover the magnetic storage element in a plan view. Second and third magnetic shielding structures sandwich the die in a thickness direction. A lead frame member has the die mounted thereon and contains a ferromagnetic material. The lead frame member overlaps with only part of the die in a plan view.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: July 23, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takeharu Kuroiwa, Masayoshi Tarutani, Takashi Takenaga, Hiroshi Takada
  • Patent number: 8427866
    Abstract: There are provided magnetic storage elements capable of performing a high-reliability write operation by inhibiting erroneous reversal of data of the magnetic storage element put in a semi-selected state, and a magnetic storage device using this. A recording layer having an easy axis and a hard axis overlaps at least one of a first or second conductive layer at the entire region thereof in plan view. First endpoints of a first line segment along the easy axis and maximum in dimension overlapping the recording layer in plan view don't overlap the second conductive layer in plan view. At least one of second endpoints of a pair of endpoints of a second line segment passing through the middle point of the first line segment, orthogonal to the first line segment in plan view, and overlapping the recording layer in plan view doesn't overlap the first conductive layer in plan view.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: April 23, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Takenaga, Takeharu Kuroiwa, Taisuke Furukawa
  • Patent number: 8383427
    Abstract: A semiconductor device having a MTJ device excellent in operating characteristics and a manufacturing method therefor are provided. The MTJ device is formed of a laminated structure which is obtained by laminating a lower magnetic film, a tunnel insulating film, and an upper magnetic film in this order. The lower and upper magnetic films contain noncrystalline or microcrystalline ferrocobalt boron (CoFeB) as a constituent material. The tunnel insulating film contains aluminum oxide (AlOx) as a constituent material. A CAP layer is formed over the upper magnetic film and a hard mask is formed over the CAP layer. The CAP layer contains a substance of crystalline ruthenium (Ru) as a constituent material and the hard mask contains a substance of crystalline tantalum (Ta) as a constituent material. The film thickness of the hard mask is larger than that of the CAP layer.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: February 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Ryoji Matsuda, Shuichi Ueno, Haruo Furuta, Takashi Takenaga, Takeharu Kuroiwa
  • Patent number: 8378674
    Abstract: A magnetic field detection device including a magnetic body (magnetic flux guide) provided for adjusting a magnetic field to be applied to a magneto-resistance element. A shape of an on-substrate magnetic body in plan view is a tapered shape on one end portion side and a substantially funnel shape on another end portion side opposite the one end portion, the another end portion being larger in width than the one end portion, and a magneto-resistance element is disposed in front of an output-side end portion. In the on-substrate magnetic body, a contour of a tapered portion is not linear like a funnel, but has a curved shape in which a first curved portion protruding outward with a gentle curvature and a second curved portion protruding inward with a curvature similar to that of the first curved portion are continuously formed.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: February 19, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Taisuke Furukawa, Takeharu Kuroiwa, Shingo Tomohisa, Takashi Takenaga, Masakazu Taki, Hiroshi Takada, Yuji Abe
  • Patent number: 8362581
    Abstract: Magnetic memory element includes recording layer changing magnetization direction by external magnetic field, having easy-axis and hard-axis crossing easy-axis, first conductive layer forming magnetic field in direction crossing direction of easy-axis at layout position of recording layer, second conductive layer extending in direction crossing first conductive layer and forming magnetic field in direction crossing direction of hard-axis at layout position of recording layer. Recording layer has at least part between first conductive layer and second conductive layer. Planar-shaped recording layer viewed from direction where first and second conductive layers and recording layer are laminated, has portion located on side and other portion located on other side, with respect to virtual first center line of first conductive layer along direction where first conductive layer extends viewed from lamination direction.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: January 29, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Takenaga, Taisuke Furukawa, Takeharu Kuroiwa
  • Publication number: 20120301975
    Abstract: A semiconductor device having a MTJ device excellent in operating characteristics and a manufacturing method therefor are provided. The MTJ device is formed of a laminated structure which is obtained by laminating a lower magnetic film, a tunnel insulating film, and an upper magnetic film in this order. The lower and upper magnetic films contain noncrystalline or microcrystalline ferrocobalt boron (CoFeB) as a constituent material. The tunnel insulating film contains aluminum oxide (AlOx) as a constituent material. A CAP layer is formed over the upper magnetic film and a hard mask is formed over the CAP layer. The CAP layer contains a substance of crystalline ruthenium (Ru) as a constituent material and the hard mask contains a substance of crystalline tantalum (Ta) as a constituent material. The film thickness of the hard mask is larger than that of the CAP layer.
    Type: Application
    Filed: August 3, 2012
    Publication date: November 29, 2012
    Inventors: Ryoji Matsuda, Shuichi Ueno, Haruo Furuta, Takashi Takenaga, Takeharu Kuroiwa
  • Publication number: 20120251847
    Abstract: There are provided magnetic storage elements capable of performing a high-reliability write operation by inhibiting erroneous reversal of data of the magnetic storage element put in a semi-selected state, and a magnetic storage device using this. A recording layer having an easy axis and a hard axis overlaps at least one of a first or second conductive layer at the entire region thereof in plan view. First endpoints of a first line segment along the easy axis and maximum in dimension overlapping the recording layer in plan view don't overlap the second conductive layer in plan view. At least one of second endpoints of a pair of endpoints of a second line segment passing through the middle point of the first line segment, orthogonal to the first line segment in plan view, and overlapping the recording layer in plan view doesn't overlap the first conductive layer in plan view.
    Type: Application
    Filed: February 15, 2012
    Publication date: October 4, 2012
    Inventors: Takashi TAKENAGA, Takeharu KUROIWA, Taisuke FURUKAWA
  • Patent number: 8269295
    Abstract: There is provided a magnetic memory device stable in write characteristics. The magnetic memory device has a recording layer. The planar shape of the recording layer has the maximum length in the direction of the easy-axis over a primary straight line along the easy-axis, and is situated over a length smaller than the half of the maximum length in the direction perpendicular to the easy-axis, and on the one side and on the other side of the primary straight line respectively, the planar shape has a first part situated over a length in the direction perpendicular to the easy-axis, and a second part situated over a length smaller than the length in the direction perpendicular to the easy-axis. The outer edge of the first part includes only a smooth curve convex outwardly of the outer edge.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: September 18, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Takenaga, Takeharu Kuroiwa, Hiroshi Takada, Shuichi Ueno, Kiyoshi Kawabata
  • Patent number: 8258592
    Abstract: A semiconductor device having a MTJ device excellent in operating characteristics and a manufacturing method therefor are provided. The MTJ device is formed of a laminated structure which is obtained by laminating a lower magnetic film, a tunnel insulating film, and an upper magnetic film in this order. The lower and upper magnetic films contain noncrystalline or microcrystalline ferrocobalt boron (CoFeB) as a constituent material. The tunnel insulating film contains aluminum oxide (AlOx) as a constituent material. A CAP layer is formed over the upper magnetic film and a hard mask is formed over the CAP layer. The CAP layer contains a substance of crystalline ruthenium (Ru) as a constituent material and the hard mask contains a substance of crystalline tantalum (Ta) as a constituent material. The film thickness of the hard mask is larger than that of the CAP layer.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: September 4, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Ryoji Matsuda, Shuichi Ueno, Haruo Furuta, Takashi Takenaga, Takeharu Kuroiwa
  • Publication number: 20110291209
    Abstract: To provide a magnetic memory device having an increased write current and improved reliability in writing. The magnetic memory device of the invention has a substrate, a write line provided over the substrate, a bit line placed with a space from the write line in a thickness direction of the substrate and extending in a direction crossing with an extending direction of the write line, and a magnetic memory element positioned between the write line and the bit line. The magnetic memory element has a pinned layer whose magnetization direction has been fixed and a recording layer whose magnetization direction changes, depending on an external magnetic field. The recording layer contains an alloy film. The alloy film contains cobalt, iron, and boron and its boron content exceeds 21 at %.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 1, 2011
    Inventors: Takashi TAKENAGA, Ryoji MATSUDA, Junichi TSUCHIMOTO
  • Patent number: 8036024
    Abstract: In a ferromagnetic tunnel junction element, a recording layer is in a circular shape, which can suppress an increase in magnetization switching field due to miniaturization of the element. Further, the recording layer includes a first ferromagnetic layer, a first non-magnetic layer, a second ferromagnetic layer, a second non-magnetic layer, and a third ferromagnetic layer successively stacked. The first and second ferromagnetic layers, and the second and third ferromagnetic layers are coupled antiparallel to each other, so that it is possible to control the magnetization distribution of the recording layer in an approximately single direction.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: October 11, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Takenaga, Takeharu Kuroiwa, Hiroshi Kobayashi, Sadeh Beysen
  • Publication number: 20110233699
    Abstract: Magnetic memory element includes recording layer changing magnetization direction by external magnetic field, having easy-axis and hard-axis crossing easy-axis, first conductive layer forming magnetic field in direction crossing direction of easy-axis at layout position of recording layer, second conductive layer extending in direction crossing first conductive layer and forming magnetic field in direction crossing direction of hard-axis at layout position of recording layer. Recording layer has at least part between first conductive layer and second conductive layer. Planar-shaped recording layer viewed from direction where first and second conductive layers and recording layer are laminated, has portion located on side and other portion located on other side, with respect to virtual first center line of first conductive layer along direction where first conductive layer extends viewed from lamination direction.
    Type: Application
    Filed: March 28, 2011
    Publication date: September 29, 2011
    Inventors: Takashi Takenaga, Taisuke Furukawa, Takeharu Kuroiwa
  • Patent number: 8013407
    Abstract: There is provided a magnetic memory device stable in write characteristics. The magnetic memory device has a recording layer. The planar shape of the recording layer has the maximum length in the direction of the easy-axis over a primary straight line along the easy-axis, and is situated over a length smaller than the half of the maximum length in the direction perpendicular to the easy-axis, and on the one side and on the other side of the primary straight line respectively, the planar shape has a first part situated over a length in the direction perpendicular to the easy-axis, and a second part situated over a length smaller than the length in the direction perpendicular to the easy-axis. The outer edge of the first part includes only a smooth curve convex outwardly of the outer edge.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: September 6, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Takenaga, Takeharu Kuroiwa, Hiroshi Takada, Shuichi Ueno, Kiyoshi Kawabata
  • Publication number: 20110193185
    Abstract: There is provided a magnetic memory device stable in write characteristics. The magnetic memory device has a recording layer. The planar shape of the recording layer has the maximum length in the direction of the easy-axis over a primary straight line along the easy-axis, and is situated over a length smaller than the half of the maximum length in the direction perpendicular to the easy-axis, and on the one side and on the other side of the primary straight line respectively, the planar shape has a first part situated over a length in the direction perpendicular to the easy-axis, and a second part situated over a length smaller than the length in the direction perpendicular to the easy-axis. The outer edge of the first part includes only a smooth curve convex outwardly of the outer edge.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Applicant: RENESAS ELECTRONICS CORPORTION
    Inventors: Takashi Takenaga, Takeharu Kuroiwa, Hiroshi Takada, Shuichi Ueno, Kiyoshi Kawabata
  • Patent number: 7983075
    Abstract: Ferromagnetic layers have magnetizations oriented to such directions as to cancel each other, so that the net magnetization of the ferromagnetic layers is substantially zero. That is, the ferromagnetic layers are exchange-coupled with a nonmagnetic layer interposed therebetween, thereby forming an SAF structure. Since the net magnetization of the ferromagnetic layers forming the SAF structure is substantially zero, the magnetization of a recording layer is determined by the magnetization of a ferromagnetic layer. Therefore, the ferromagnetic layer is made of a CoFeB alloy having high uniaxial magnetic anisotropy, and the ferromagnetic layers are made of a CoFe alloy having a high exchange-coupling force.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: July 19, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Takenaga, Takeharu Kuroiwa, Taisuke Furukawa, Masakazu Taki
  • Patent number: 7932573
    Abstract: A magnetic memory element having a layer structure containing a fixing layer (pinned layer: PL) having a magnetization direction fixed unidirectionally, a nonmagnetic dielectric layer (TN1) in contact with the fixing layer (PL), and a memory layer (free layer: FL) having a first surface in contact with the nonmagnetic dielectric layer (TN1) and a second surface on the opposite to the first surface, the magnetization direction of the memory layer (FL) having a reversible magnetization direction in response to the current through the layer structure. The entire surface of the first surface of the memory layer (FL) is covered with the nonmagnetic dielectric layer (TN1) and in the joint surface of the nonmagnetic dielectric layer (TN1) and the fixing layer (PL), the first surface of the nonmagnetic dielectric layer (TN1) is exposed in a manner of surrounding the joint surface.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: April 26, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Takada, Takashi Takenaga, Takeharu Kuroiwa, Taisuke Furukawa
  • Publication number: 20100270633
    Abstract: Ferromagnetic layers have magnetizations oriented to such directions as to cancel each other, so that the net magnetization of the ferromagnetic layers is substantially zero. That is, the ferromagnetic layers are exchange-coupled with a nonmagnetic layer interposed therebetween, thereby forming an SAF structure. Since the net magnetization of the ferromagnetic layers forming the SAF structure is substantially zero, the magnetization of a recording layer is determined by the magnetization of a ferromagnetic layer. Therefore, the ferromagnetic layer is made of a CoFeB alloy having high uniaxial magnetic anisotropy, and the ferromagnetic layers are made of a CoFe alloy having a high exchange-coupling force.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 28, 2010
    Applicant: Renesas Technology Corp.
    Inventors: Takashi Takenaga, Takeharu Kuroiwa, Taisuke Furukawa, Masakazu Taki
  • Publication number: 20100254182
    Abstract: A magnetic storage device which enables stable operation at the time of recording information into MRAM and the stable retention of recorded information. The die of the magnetic storage device has a substrate, first and second wirings, a magnetic storage element and a first magnetic shielding structure. The first magnetic shielding structure is formed to cover the magnetic storage element in a plan view. Second and third magnetic shielding structures sandwich the die in a thickness direction. A lead frame member has the die mounted thereon and contains a ferromagnetic material. The lead frame member overlaps with only part of the die in a plan view.
    Type: Application
    Filed: March 22, 2010
    Publication date: October 7, 2010
    Inventors: Takeharu KUROIWA, Masayoshi Tarutani, Takashi Takenaga, Hiroshi Takada
  • Patent number: 7786725
    Abstract: A magnetic field detection apparatus capable of changing the detection range and detection sensitivity as desired for a specific application is disclosed. A magnetoresistance effect element is applied a bias magnetic field and an external magnetic field. The bias magnetic field and the external magnetic field are generated on the same straight line, and therefore the bias magnetic field functions to hamper the external magnetic field applied to the magnetoresistance effect element. Thus, the magnetization of the free layer of the magnetoresistance effect element is suppressed, and the rotational angle of the magnetized vector is reduced. As a result, the characteristic of the resistance value of the magnetoresistance effect element to the external magnetic field is shifted by an amount equivalent to the bias magnetic field.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: August 31, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Taisuke Furukawa, Hiroshi Kobayashi, Takashi Takenaga, Takeharu Kuroiwa, Sadeh Beysen, Masakazu Taki