Patents by Inventor Takashi Tamagawa

Takashi Tamagawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230257897
    Abstract: A corrosion-resistant terminal material for an aluminum core wire having a good adhesion of plating and a high effect of corrosion resistant, having a base material in which at least a surface is made of copper or copper alloy and a corrosion-resistant film formed on at least a part of the base material; the corrosion film having an intermediate alloy layer made of tin alloy, a zinc layer made of zinc or zinc alloy formed on the intermediate alloy layer, and a tin-zinc alloy layer made of tin alloy containing zinc and formed on the zinc layer; and a tin content in the intermediate alloy layer is 90 at % or less.
    Type: Application
    Filed: June 16, 2021
    Publication date: August 17, 2023
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Takashi Tamagawa, Kenji Kubota
  • Patent number: 11661667
    Abstract: An anti-corrosion terminal material including a base material made of copper or copper alloy and a coating film laminated on the base material: the coating film includes: a first coating film, provided with a zinc layer made of zinc alloy and a tin layer made of tin or tin alloy which are laminated in this order, and formed at a planned core contact part; and a second coating film including the tin layer but not comprising the zinc layer, which is provided at a planned contact part being a contact part when the terminal is formed: and the zinc layer has a thickness not less than 0.1 ?m and not more than 5.0 ?m and zinc concentration not less than 30% by mass and not more than 95% by mass, and has any one or more of nickel, iron, manganese, molybdenum, cobalt, cadmium, lead and tin as a balance.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 30, 2023
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kenji Kubota, Yoshie Tarutani, Takashi Tamagawa, Kiyotaka Nakaya
  • Patent number: 11530490
    Abstract: In a terminal material with a silver coating film including a silver layer on a surface, a terminal and a terminal material having high reliability are easily manufactured with low cost without a heat treatment. A base material formed of copper or a copper alloy; and nickel layer, an intermediate layer, and a silver layer laminated on the base material in this order are included, the nickel layer has a thickness of 0.05 ?m to 5.00 ?m and is formed of nickel or a nickel alloy, the intermediate layer has a thickness of 0.02 ?m to 1.00 ?m and is an alloy layer containing silver (Ag) and a substance X, and the substance X includes one or more kinds of tin, bismuth, gallium, indium, and germanium.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: December 20, 2022
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kenji Kubota, Tooru Nishimura, Takashi Tamagawa, Kiyotaka Nakaya
  • Publication number: 20220085526
    Abstract: Providing an anti-corrosion terminal material having high corrosion resistance effect and good adhesiveness of a film. A first film is formed on at least a part of a base material in which at least a surface is made of copper or copper alloy; in the first film, a zinc layer made of zinc or zinc alloy is formed on a mixed layer in which a copper-tin alloy region made of copper tin alloy and a tin region made of tin or tin alloy other than copper tin alloy are mixed; the zinc layer is in contact with both the copper-tin alloy region and the tin region of the mixed layer; a ratio R1/R2 is 0.05 or more and 2.5 or less where a length in contact with the copper-tin alloy region in a cross section along a thickness direction is R1 (?m) and a length in contact with the tin layer is R2 (?m).
    Type: Application
    Filed: December 27, 2019
    Publication date: March 17, 2022
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kenji Kubota, Takashi Tamagawa, Toru Nishimura, Yoshie Tarutani, Kiyotaka Nakaya
  • Publication number: 20210184380
    Abstract: An anti-corrosion terminal material including a base material made of copper or copper alloy and a coating film laminated on the base material: the coating film includes: a first coating film, provided with a zinc layer made of zinc alloy and a tin layer made of tin or tin alloy which are laminated in this order, and formed at a planned core contact part; and a second coating film including the tin layer but not comprising the zinc layer, which is provided at a planned contact part being a contact part when the terminal is formed: and the zinc layer has a thickness not less than 0.1 ?m and not more than 5.0 ?m and zinc concentration not less than 30% by mass and not more than 95% by mass, and has any one or more of nickel, iron, manganese, molybdenum, cobalt, cadmium, lead and tin as a balance.
    Type: Application
    Filed: October 25, 2018
    Publication date: June 17, 2021
    Inventors: Kenji Kubota, Yoshie Tarutani, Takashi Tamagawa, Kiyotaka Nakaya
  • Publication number: 20210158990
    Abstract: In a terminal material with a silver coating film including a silver layer on a surface, a terminal and a terminal material having high reliability are easily manufactured with low cost without a heat treatment. A base material formed of copper or a copper alloy; and nickel layer, an intermediate layer, and a silver layer laminated on the base material in this order are included, the nickel layer has a thickness of 0.05 ?m to 5.00 ?m and is formed of nickel or a nickel alloy, the intermediate layer has a thickness of 0.02 ?m to 1.00 ?m and is an alloy layer containing silver (Ag) and a substance X, and the substance X includes one or more kinds of tin, bismuth, gallium, indium, and germanium.
    Type: Application
    Filed: August 8, 2018
    Publication date: May 27, 2021
    Inventors: Kenji Kubota, Tooru Nishimura, Takashi Tamagawa, Kiyotaka Nakaya
  • Patent number: 10923245
    Abstract: A terminal material for connectors, which is obtained by sequentially laminating on a substrate that is formed of copper or a copper alloy, a nickel or nickel alloy layer, a copper-tin alloy layer and a tin layer in this order, and: the tin layer has an average thickness of from 0.2 ?m to 1.2 ?m (inclusive); the copper-tin alloy layer is a compound alloy layer that is mainly composed of Cu6Sn5, with some of the copper in the Cu6Sn5 being substituted by nickel, and has an average crystal grain diameter of from 0.2 ?m to 1.5 ?m (inclusive); a part of the copper-tin alloy layer is exposed from the surface of the tin layer, with the exposure area ratio being from 1% to 60% (inclusive); the nickel or nickel alloy layer has an average thickness of from 0.05 ?m to 1.0 ?m (inclusive) and an average crystal grain diameter of from 0.01 ?m to 0.5 ?m (inclusive).
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: February 16, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Yuki Inoue, Kazunari Maki, Shinichi Funaki, Takashi Tamagawa, Kiyotaka Nakaya
  • Patent number: 10858750
    Abstract: Providing a tin-plated terminal material with high corrosion-prevention effect and low contact resistance, a terminal formed from the terminal material, and an electric wire terminal-end structure. Provided are a base material made of copper or copper alloy, a zinc layer made of zinc or zinc alloy formed on the base material, and a tin layer made of tin or tin alloy formed on the zinc layer: in a whole of the zinc layer and the tin layer, a tin amount per unit area is 0.30 mg/cm2 to 7.00 mg/cm2 inclusive, a zinc amount per unit area is 0.07 mg/cm2 to 2.00 mg/cm2 inclusive, a content percentage of zinc in a vicinity of a surface in the tin layer is 0.2% to 10% by mass inclusive, and a length proportion of low-angle grain boundaries occupied in a total length of crystal boundaries in the tin layer is 2% to 30% inclusive.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: December 8, 2020
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kenji Kubota, Yoshie Tarutani, Takashi Tamagawa, Kiyotaka Nakaya
  • Publication number: 20200173049
    Abstract: Providing a tin-plated terminal material with high corrosion-prevention effect and low contact resistance, a terminal formed from the terminal material, and an electric wire terminal-end structure. Provided are a base material made of copper or copper alloy, a zinc layer made of zinc or zinc alloy formed on the base material, and a tin layer made of tin or tin alloy formed on the zinc layer: in a whole of the zinc layer and the tin layer, a tin amount per unit area is 0.30 mg/cm2 to 7.00 mg/cm2 inclusive, a zinc amount per unit area is 0.07 mg/cm2 to 2.00 mg/cm2 inclusive, a content percentage of zinc in a vicinity of a surface in the tin layer is 0.2% to 10% by mass inclusive, and a length proportion of low-angle grain boundaries occupied in a total length of crystal boundaries in the tin layer is 2% to 30% inclusive.
    Type: Application
    Filed: July 26, 2018
    Publication date: June 4, 2020
    Inventors: Kenji Kubota, Yoshie Tarutani, Takashi Tamagawa, Kiyotaka Nakaya
  • Publication number: 20190362865
    Abstract: A terminal material for connectors, which is obtained by sequentially laminating on a substrate that is formed of copper or a copper alloy, a nickel or nickel alloy layer, a copper-tin alloy layer and a tin layer in this order, and: the tin layer has an average thickness of from 0.2 ?m to 1.2 ?m (inclusive); the copper-tin alloy layer is a compound alloy layer that is mainly composed of Cu6Sn5, with some of the copper in the Cu6Sn5 being substituted by nickel, and has an average crystal grain diameter of from 0.2 ?m to 1.5 ?m (inclusive); a part of the copper-tin alloy layer is exposed from the surface of the tin layer, with the exposure area ratio being from 1% to 60% (inclusive); the nickel or nickel alloy layer has an average thickness of from 0.05 ?m to 1.0 ?m (inclusive) and an average crystal grain diameter of from 0.01 ?m to 0.5 ?m (inclusive).
    Type: Application
    Filed: January 16, 2018
    Publication date: November 28, 2019
    Inventors: Yuki Inoue, Kazunari Maki, Shinichi Funaki, Takashi Tamagawa, Kiyotaka Nakaya
  • Patent number: 9746398
    Abstract: An automated analyzer is offered which can dilute an analyte repeatedly without contamination due to carry-over and thus can yield reliable analysis results. The analyzer has an analyte turntable for holding analyte containers in which analyte is stored, a dilution turntable for holding dilution containers for storing a diluent, a dilution probe for aliquotting a liquid between two containers held on these two turntables, respectively, a diluent vessel for storing a diluent, and a diluent supply mechanism for supplying the diluent into the diluent vessel. The dilution probe has a function of aliquotting the diluent stored in the diluent vessel into the dilution containers held on the dilution turntable. The diluent vessel has a diluent discharging mechanism for discharging the diluent from inside the diluent vessel.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: August 29, 2017
    Assignee: JEOL Ltd.
    Inventors: Takashi Tamagawa, Yasuhiro Fukumoto
  • Publication number: 20150309060
    Abstract: An automated analyzer is offered which can dilute an analyte repeatedly without contamination due to carry-over and thus can yield reliable analysis results. The analyzer has an analyte turntable for holding analyte containers in which analyte is stored, a dilution turntable for holding dilution containers for storing a diluent, a dilution probe for aliquotting a liquid between two containers held on these two turntables, respectively, a diluent vessel for storing a diluent, and a diluent supply mechanism for supplying the diluent into the diluent vessel. The dilution probe has a function of aliquotting the diluent stored in the diluent vessel into the dilution containers held on the dilution turntable. The diluent vessel has a diluent discharging mechanism for discharging the diluent from inside the diluent vessel.
    Type: Application
    Filed: March 23, 2015
    Publication date: October 29, 2015
    Inventors: Takashi Tamagawa, Yasuhiro Fukumoto
  • Patent number: 8981233
    Abstract: A method for producing a Cu—Sn layer and an Sn-based surface layer are formed in this order on the surface of a Cu-based substrate through an Ni-based base layer, and the Cu—Sn layer is composed of a Cu3Sn layer arranged on the Ni-based base layer and a Cu6Sn5 layer arranged on the Cu3Sn layer; the Cu—Sn layer obtained by bonding the Cu3Sn layer and the Cu6Sn5 layer is provided with recessed and projected portions on the surface which is in contact with the Sn-based surface layer; thicknesses of the recessed portions are set to 0.05 ?m to 1.5 ?m, the area coverage of the Cu3Sn layer with respect to the Ni-based base layer is 60% or higher, and the ratio of the thicknesses of the projected portions to the thicknesses of the recessed portions in the Cu—Sn layer is 1.2 to 5.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: March 17, 2015
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Takeshi Sakurai, Seiichi Ishikawa, Kenji Kubota, Takashi Tamagawa
  • Publication number: 20140134457
    Abstract: A method for producing a Cu—Sn layer and an Sn-based surface layer are formed in this order on the surface of a Cu-based substrate through an Ni-based base layer, and the Cu—Sn layer is composed of a Cu3Sn layer arranged on the Ni-based base layer and a Cu6Sn5 layer arranged on the Cu3Sn layer; the Cu—Sn layer obtained by bonding the Cu3Sn layer and the Cu6Sn5 layer is provided with recessed and projected portions on the surface which is in contact with the Sn-based surface layer; thicknesses of the recessed portions are set to 0.05 ?m to 1.5 ?m, the area coverage of the Cu3Sn layer with respect to the Ni-based base layer is 60% or higher, and the ratio of the thicknesses of the projected portions to the thicknesses of the recessed portions in the Cu—Sn layer is 1.2 to 5.
    Type: Application
    Filed: January 23, 2014
    Publication date: May 15, 2014
    Applicant: MITSUBISHI SHINDOH CO., LTD.
    Inventors: Takeshi Sakurai, Seiichi Ishikawa, Kenji Kubota, Takashi Tamagawa
  • Patent number: 8698002
    Abstract: A Cu—Sn layer and an Sn-based surface layer are formed in this order on the surface of a Cu-based substrate through an Ni-based base layer, and the Cu—Sn layer is composed of a Cu3Sn layer arranged on the Ni-based base layer and a Cu6Sn5 layer arranged on the Cu3Sn layer; the Cu—Sn layer obtained by bonding the Cu3Sn layer and the Cu6Sn5 layer is provided with recessed and projected portions on the surface which is in contact with the Sn-based surface layer; thicknesses of the recessed portions are set to 0.05 ?m to 1.5 ?m, the area coverage of the Cu3Sn layer with respect to the Ni-based base layer is 60% or higher, the ratio of the thicknesses of the projected portions to the thicknesses of the recessed portions in the Cu—Sn layer is 1.2 to 5, and the average thickness of the Cu3Sn layer is 0.01 ?m to 0.5 ?m.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: April 15, 2014
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Takeshi Sakurai, Seiichi Ishikawa, Kenji Kubota, Takashi Tamagawa
  • Publication number: 20110266035
    Abstract: [Object] To provide a conductive member which has a stable contact resistance, is difficult to be separated, and also decreases the inserting and drawing force when used for a connector. [Means to Solve Problems] A Cu—Sn intermetallic compound layer 3 and an Sn-based surface layer 4 are formed in this order on the surface of a Cu-based substrate 1 through an Ni-based base layer 2, and, furthermore, the Cu—Sn intermetallic compound layer 3 is composed of a Cu3Sn layer 5 arranged on the Ni-based base layer 2 and a Cu6Sn5 layer 6 arranged on the Cu3Sn layer 5; the Cu—Sn intermetallic compound layer 3 obtained by bonding the Cu3Sn layer 5 and the Cu6Sn5 layer 6 is provided with recessed and projected portions on the surface which is in contact with the Sn-based surface layer 4; thicknesses X of the recessed portions 7 are set to 0.05 ?m to 1.
    Type: Application
    Filed: July 9, 2009
    Publication date: November 3, 2011
    Applicant: MITSUBISHI SHINDOH CO., LTD.
    Inventors: Takeshi Sakurai, Seiichi Ishikawa, Kenji Kubota, Takashi Tamagawa
  • Patent number: 6148764
    Abstract: Introducing a silane reactant gas into a Jet Vapor Deposition microwave discharge source for deposition of silicon nitride films at increased rate. An array of regularly spaced micro-inlets in a JVD microwave discharge source delivers the silane reactant gas and act as non-interfering silane injectors to give a rate increase proportional to the number of micro-inlets while preserving deposited film quality.
    Type: Grant
    Filed: December 29, 1998
    Date of Patent: November 21, 2000
    Assignee: Jet Process Corporation
    Inventors: Guang-Ji Cui, Takashi Tamagawa, Bret Halpern
  • Patent number: 5209119
    Abstract: A microsensor or micromechanical device based upon the piezoelectric properties of thin film lead zirconate titanate (PZT) with a thickness of between 0.1 and 5 microns. The thin film PZT is sandwiched between first and second electrodes which are provided with electrical connection means for electrically connecting the electrodes to a voltage sensor or voltage source. The invention also relates to a method for making such microsensor or micromechanical device.
    Type: Grant
    Filed: December 12, 1990
    Date of Patent: May 11, 1993
    Assignee: Regents of the University of Minnesota
    Inventors: Dennis L. Polla, Takashi Tamagawa