Patents by Inventor Takashi Tatsumi

Takashi Tatsumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110313226
    Abstract: Described is a process for the production of a zeolitic material having an LEV-type framework structure comprising YO2 and optionally comprising X2O3, wherein said process comprises: (1) preparing a mixture comprising one or more sources for YO2, one or more solvents, and optionally comprising seed crystals; and (2) crystallizing the mixture obtained in step (1); wherein Y is a tetravalent element, and X is a trivalent element, wherein the zeolitic material optionally comprises one or more alkali metals M, wherein the molar ratio of the total amount of the one or more solvents to the total amount of the one or more sources for YO2 based on YO2 is 9.5 or less, and wherein for crystallization temperatures of 175° C.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Applicants: Tokyo Institute of Technology, BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Bibiana Andrea Betancur Moreno, Hermann Gies, Feng-Shou Xiao, Takashi Tatsumi, Xinhe Bao, Weiping Zhang, Dirk de Vos, Meike Pfaff, Bin Xie, Haiyan Zhang
  • Patent number: 8063114
    Abstract: A chiral inorganic mesoporous material characterized by having a chiral twisted structure and being mesoporous; a process for producing the material; and a method of using the material. The process for inorganic mesoporous material production is a method in which one or more polymerizable inorganic monomers selected from the group consisting of polymerizable inorganic monomers and polymerizable inorganic monomers having a functional group capable of having a charge are polymerized in the presence of a solvent using as a template a self-assembly of a chiral surfactant such as an N-(higher alkanoyl)amino acid salt. Examples of the use of the inorganic mesoporous material include the separation of racemates and reaction fields for asymmetric syntheses.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: November 22, 2011
    Assignee: Japan Science and Technology Agency
    Inventors: Takashi Tatsumi, Shunai Che, Kazutami Sakamoto
  • Patent number: 7560094
    Abstract: A modified layered metallosilicate material is produced by a process comprising the following first to fifth steps: (First Step) a step of heating a mixture containing a template compound, a boron compound, a silicon-containing compound and water to thereby obtain a precursor (A); (Second Step) a step of acid-treating the precursor (A) obtained in the first step, to thereby obtain a precursor (B); (Third Step) a step of heating the precursor (B) obtained in the second step in the presence of a swelling agent so as to swell the precursor (B) to thereby obtain a precursor (C); (Fourth Step) a step of modifying the manner of the stacking between layers in the precursor (C) obtained in the third step, to thereby obtain a precursor (D); and (Fifth Step) a step of calcining the precursor (D) obtained in the fourth step, to thereby obtain a modified layered metallosilicate material.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: July 14, 2009
    Assignee: Showa Denko K.K.
    Inventors: Takashi Tatsumi, Peng Wu, Katsuyuki Tsuji
  • Publication number: 20090043003
    Abstract: A chiral inorganic mesoporous material characterized by having a chiral twisted structure and being mesoporous; a process for producing the material; and a method of using the material. The process for inorganic mesoporous material production is a method in which one or more polymerizable inorganic monomers selected from the group consisting of polymerizable inorganic monomers and polymerizable inorganic monomers having a functional group capable of having a charge are polymerized in the presence of a solvent using as a template a self-assembly of a chiral surfactant such as an N-(higher alkanoyl)amino acid salt. Examples of the use of the inorganic mesoporous material include the separation of racemates and reaction fields for asymmetric syntheses.
    Type: Application
    Filed: April 28, 2005
    Publication date: February 12, 2009
    Inventors: Takashi Tatsumi, Shunai Che, Kazutami Sakamoto
  • Publication number: 20080311397
    Abstract: A novel silica which is in the form of ultrafine particles having mesopores and has a regular structure; and a process for producing the silica. The silica is a self-organized nanoparticulate silica characterized in that the average particle diameter is 4 to 30 nm, preferably 6 to 20 nm, and these particles are regularly arranged so as to form a primitive cubic lattice. The self-organized nanoparticulate silica is produced by mixing an alkoxysilane with an aqueous solution of a basic amino acid, reacting the mixture at 40 to 100° C., and subjecting the reaction mixture to drying and preferably to subsequent burning. Also provided is a process for producing fine silica particles having a particle diameter of 4 to 30 nm, which comprises mixing a solution of an alkoxysilane compound having 1 to 4 alkoxy groups with a solution of a basic amino acid and reacting the mixture at 20 to 100° C. to cause hydrolysis and condensation polymerization.
    Type: Application
    Filed: March 10, 2006
    Publication date: December 18, 2008
    Applicant: Japan Science and Technology Agency
    Inventors: Takashi Tatsumi, Toshiyuki Yokoi
  • Patent number: 7405315
    Abstract: (A) An anionic surfactant, (B) a silicate monomer and (C) a basic silane are mixed in water or a mixed solvent of a water-miscible organic solvent and water to obtain a mesoporous silica complex having mesopores with a uniform size, the anionic surfactant Component (A) is removed by washing the resultant mesoporous silica complex with an acidic aqueous solution, a water-miscible organic solvent or an aqueous solution thereof to obtain a mesoporous silica outer shell utilizing the structure of the mesoporous silica complex as a template, and the mesoporous silica complex or the mesoporous silica outer shell is calcined to obtain a mesoporous silica. The mesoporous silica can be synthesized in this manner utilizing the anionic surfactant micelle with a remarkably low affinity to the silicate monomer.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: July 29, 2008
    Assignee: Ajinomoto Co., Inc.
    Inventors: Takashi Tatsumi, Hideaki Yoshitake, Toshiyuki Yokoi, Shunai Che, Kazutami Sakamoto
  • Patent number: 7326401
    Abstract: A process for easily synthesizing a zeolite substance containing an element having a large ionic radius in the framework at a high ratio. This process comprises the following first to fourth steps: First Step: a step of heating a mixture containing a template compound, a compound containing a Group 13 element of the periodic table, a silicon-containing compound and water to obtain a precursor (A); Second Step: a step of acid-treating the precursor (A) obtained in the first step; Third Step: a step of heating the acid-treated precursor (A) obtained in the second step together with a mixture containing a template compound and water to obtain a precursor (B); and Fourth Step: a step of calcining the precursor (B) obtained in the third step to obtain a zeolite substance.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: February 5, 2008
    Assignee: Showa Denko K.K.
    Inventors: Takashi Tatsumi, Peng Wu, Katsuyuki Tsuji
  • Patent number: 7323154
    Abstract: A titanosilicate represented by the following compositional formula (1), wherein in the infrared absorption spectrum measured in the dehydrated state, the absorption spectrum has an absorption band having a relative maximum value at 930±15 cm?1: xTiO2.(1?x)SiO2??Compositional Formula (1) (wherein x is from 0.0001 to 0.2).
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: January 29, 2008
    Assignee: Showa Denko K.K.
    Inventors: Takashi Tatsumi, Peng Wu, Katsuyuki Tsuji
  • Publication number: 20060105903
    Abstract: A modified layered metallosilicate material is produced by a process comprising the following first to fifth steps: (First Step) a step of heating a mixture containing a template compound, a boron compound, a silicon-containing compound and water to thereby obtain a precursor (A); (Second Step) a step of acid-treating the precursor (A) obtained in the first step, to thereby obtain a precursor (B); (Third Step) a step of heating the precursor (B) obtained in the second step in the presence of a swelling agent so as to swell the precursor (B) to thereby obtain a precursor (C); (Fourth Step) a step of modifying the manner of the stacking between layers in the precursor (C) obtained in the third step, to thereby obtain a precursor (D); and (Fifth Step) a step of calcining the precursor (D) obtained in the fourth step, to thereby obtain a modified layered metallosilicate material.
    Type: Application
    Filed: February 2, 2004
    Publication date: May 18, 2006
    Inventors: Takashi Tatsumi, Peng Wu, Katsuyuki Tsuji
  • Publication number: 20050209091
    Abstract: A titanosilicate represented by the following compositional formula (1), wherein in the infrared absorption spectrum measured in the dehydrated state, the absorption spectrum has an absorption band having a relative maximum value at 930±15 cm?1: xTiO2.(1?X)SiO2??Compositional Formula (1) (wherein x is from 0.0001 to 0.2).
    Type: Application
    Filed: February 26, 2003
    Publication date: September 22, 2005
    Inventors: Takashi Tatsumi, Peng Wu, Katsuyuki Tsuji
  • Patent number: 6925018
    Abstract: A system-in-package (SiP) type semiconductor device has a test function capable of conducting a test singly on a memory chip directly from outside. When a mode signal included in a test signal input from an external connection terminal indicates a “normal operation mode”, a test circuit provided on a logic chip allows a logic circuit to use an access path (wiring) to a memory circuit. On the other hand, when the mode signal indicates a “test mode”, the test circuit uses the access path to access the memory circuit and conducts a test, an accelerated life test, or a multi-bit test, based on the content of the test signal input from the external connection terminal. The test circuit also conducts a built-in self-test.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: August 2, 2005
    Assignee: Renesas Technology Corp.
    Inventor: Takashi Tatsumi
  • Publication number: 20050158238
    Abstract: A process for easily synthesizing a zeolite substance containing an element having a large ionic radius in the framework at a high ratio. This process comprises the following first to fourth steps: First Step: a step of heating a mixture containing a template compound, a compound containing a Group 13 element of the periodic table, a silicon-containing compound and water to obtain a precursor (A); Second Step: a step of acid-treating the precursor (A) obtained in the first step; Third Step: a step of heating the acid-treated precursor (A) obtained in the second step together with a mixture containing a template compound and water to obtain a precursor (B); and Fourth Step: a step of calcining the precursor (B) obtained in the third step to obtain a zeolite substance.
    Type: Application
    Filed: February 26, 2003
    Publication date: July 21, 2005
    Inventors: Takashi Tatsumi, Peng Wu, Katsuyuki Tsuji
  • Publication number: 20040267038
    Abstract: (A) An anionic surfactant, (B) a silicate monomer and (C) a basic silane are mixed in water or a mixed solvent of a water-miscible organic solvent and water to obtain a mesoporous silica complex having mesopores with a uniform size, the anionic surfactant Component (A) is removed by washing the resultant mesoporous silica complex with an acidic aqueous solution, a water-miscible organic solvent or an aqueous solution thereof to obtain a mesoporous silica outer shell utilizing the structure of the mesoporous silica complex as a template, and the mesoporous silica complex or the mesoporous silica outer shell is calcined to obtain a mesoporous silica. The mesoporous silica can be synthesized in this manner utilizing the anionic surfactant micelle with a remarkably low affinity to the silicate monomer.
    Type: Application
    Filed: November 20, 2003
    Publication date: December 30, 2004
    Applicant: Ajinomoto Co., Inc.
    Inventors: Takashi Tatsumi, Hideaki Yoshitake, Toshiyuki Yokoi, Shunai Che, Kazutami Sakamoto
  • Patent number: 6759540
    Abstract: A crystalline titanosilicate catalyst which is usable as a catalyst in the oxidation reaction of a compound having a carbon-carbon double bond and at least one other functional group, a process for producing the catalyst, and a process for producing an oxidized compound by an oxidation reaction using the catalyst. It has been found that a crystalline titanosilicate having a structural code of MWW effectively functions as a catalyst in an oxidation reaction of a compound having a carbon-carbon double bond and at least one other functional group wherein the carbon-carbon double bond of the compound is oxidized by using a peroxide as an oxidizing agent, thereby to highly selectively provide an intended oxidized compound.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: July 6, 2004
    Assignee: Showa Denko K.K.
    Inventors: Wataru Oguchi, Katsuyuki Tsuji, Takashi Tatsumi, Peng Wu
  • Publication number: 20040092757
    Abstract: A crystalline titanosilicate catalyst which is usable as a catalyst in the oxidation reaction of a compound having a carbon-carbon double bond and at least one other functional group, a process for producing the catalyst, and a process for producing an oxidized compound by an oxidation reaction using the catalyst. It has been found that a crystalline titanosilicate having a structural code of MWW effectively functions as a catalyst in an oxidation reaction of a compound having a carbon-carbon double bond and at least one other functional group wherein the carbon-carbon double bond of the compound is oxidized by using a peroxide as an oxidizing agent, thereby to highly selectively provide an intended oxidized compound.
    Type: Application
    Filed: October 27, 2003
    Publication date: May 13, 2004
    Applicant: SHOWA DENKO K.K.
    Inventors: Wataru Oguchi, Katsuyuki Tsuji, Takashi Tatsumi, Peng Wu
  • Publication number: 20040085796
    Abstract: A system-in-package (SiP) type semiconductor device has a test function capable of conducting a test singly on a memory chip directly from outside. When a mode signal included in a test signal input from an external connection terminal indicates a “normal operation mode”, a test circuit provided on a logic chip allows a logic circuit to use an access path (wiring) to a memory circuit. On the other hand, when the mode signal indicates a “test mode”, the test circuit uses the access path to access the memory circuit and conducts a test, an accelerated life test, or a multi-bit test, based on the content of the test signal input from the external connection terminal. The test circuit also conducts a built-in self-test.
    Type: Application
    Filed: April 11, 2003
    Publication date: May 6, 2004
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventor: Takashi Tatsumi
  • Publication number: 20040034258
    Abstract: A crystalline titanosilicate catalyst which is usable as a catalyst in the oxidation reaction of a compound having a carbon-carbon double bond and at least one other functional group, a process for producing the catalyst, and a process for producing an oxidized compound by an oxidation reaction using the catalyst. It has been found that a crystalline titanosilicate having a structural code of MWW effectively functions as a catalyst in an oxidation reaction of a compound having a carbon-carbon double bond and at least one other functional group, or a compound having a carbon-carbon double bond a functional group and having a total carbon number of not smaller than 2 and not larger than 5, wherein the carbon-carbon double bond of the compound is oxidized by using a peroxide as an oxidizing agent, thereby to highly selectively provide an intended oxidized compound.
    Type: Application
    Filed: February 26, 2003
    Publication date: February 19, 2004
    Applicant: SHOWA DENKO K.K.
    Inventors: Wataru Oguchi, Katsuyuki Tsuji, Takashi Tatsumi, Peng Wu
  • Patent number: 6646952
    Abstract: The semiconductor circuit includes a driver that is input with a signal, a driver that is input with a signal, and a driver of which input terminal is connected to output terminals of both the drivers, and of which output terminal is connected to input terminals of both the drivers.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: November 11, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takashi Tatsumi, Junji Mori, Hiroki Sugano
  • Publication number: 20030090301
    Abstract: The semiconductor circuit includes a driver that is input with a signal, a driver that is input with a signal, and a driver of which input terminal is connected to output terminals of both the drivers, and of which output terminal is connected to input terminals of both the drivers.
    Type: Application
    Filed: April 16, 2002
    Publication date: May 15, 2003
    Inventors: Takashi Tatsumi, Junji Mori, Hiroki Sugano
  • Publication number: 20030040649
    Abstract: A crystalline titanosilicate catalyst which is usable as a catalyst in the oxidation reaction of a compound having a carbon-carbon double bond and at least one other functional group, a process for producing the catalyst, and a process for producing an oxidized compound by an oxidation reaction using the catalyst. It has been found that a crystalline titanosilicate having a structural code of MWW effectively functions as a catalyst in an oxidation reaction of a compound having a carbon-carbon double bond and at least one other functional group wherein the carbon-carbon double bond of the compound is oxidized by using a peroxide as an oxidizing agent, thereby to highly selectively provide an intended oxidized compound.
    Type: Application
    Filed: November 13, 2001
    Publication date: February 27, 2003
    Inventors: Wataru Oguchi, Katsuyuki Tsuji, Takashi Tatsumi, Peng Wu