Patents by Inventor Takaya OTA
Takaya OTA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12275001Abstract: In accordance with the technology herein disclosed, an exhaust gas purification catalyst exhibiting a high exhaust gas purifying performance using a new rare earth-containing material is provided. The exhaust gas purification catalyst herein disclosed includes a base material and a catalyst layer formed on the surface of the base material. The catalyst layer of such an exhaust gas purification catalyst includes rare earth-carrying alumina 50 including a primary particle of a rare earth particle 40 including at least one rare earth element carried on the surface of an alumina carrier 30 including alumina, and the average particle diameter D50 based on TEM observation of the rare earth particle 40 in the rare earth-carrying alumina 50 is 10 nm or less. As a result of this, it is possible to provide an exhaust gas purification catalyst having high NOx adsorption performance and CO adsorption performance.Type: GrantFiled: December 7, 2020Date of Patent: April 15, 2025Assignee: Cataler CorporationInventors: Shunsuke Oishi, Takaya Ota, Taku Miura, Hiromi Togashi, Ryosuke Takasu
-
Publication number: 20250073640Abstract: An exhaust gas purification device capable of reducing pressure loss and improving exhaust gas purification performance. Exhaust gas purification device including honeycomb substrate and outflow cell side catalyst. Honeycomb substrate includes porous partition wall defining plurality of cells extending from inflow side end surface to outflow side end surface. Plurality of cells include inflow and outflow cells adjacent across partition wall. Inflow cell has open inflow and sealed outflow side ends. Outflow cell side catalyst is disposed in inner region of partition wall at outflow cell side in outflow cell side catalyst-disposed range extending from outflow side end of partition wall to position apart by predetermined distance along extending direction. Minimum value of porosity in thickness direction of outflow cell side catalyst-disposed wall including outflow cell side catalyst-disposed range of partition wall and outflow cell side catalyst in range of 20% or more and 30% or less.Type: ApplicationFiled: August 15, 2024Publication date: March 6, 2025Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATIONInventors: Seiji NAKAHIGASHI, Koji SUGIURA, Eiji HARADA, Masatoshi IKEBE, Takaya OTA, Takeshi MORISHIMA, Ayano KIMURA
-
Patent number: 12226755Abstract: An exhaust gas purification catalyst showing resistance to peeling and high purification performance is provided. The present invention is an exhaust gas purification catalyst including a base material and a catalyst layer disposed on the base material. The catalyst layer includes a catalytic metal, a first metal oxide, and a second metal oxide having a higher heat resistance than that of the first metal oxide. When Dx is an area-based average particle diameter of the first metal oxide determined from an arbitrary cross section of the catalyst layer and Dy is an area-based particle diameter of the second metal oxide 22 measured from the cross section of the catalyst layer, a ratio of the Dy to the Dx (Dy/Dx) is 5 or more, and the Dy is 7 ?m or more. In the catalyst layer, pore volume of pores having pore diameters 30 nm or more measured by a nitrogen adsorption method is 0.28 cm3/g or more.Type: GrantFiled: June 28, 2021Date of Patent: February 18, 2025Assignee: Cataler CorporationInventors: Ryosuke Takasu, Shunsuke Oishi, Takaya Ota
-
Patent number: 12140060Abstract: Provided is an exhaust gas purification system that allows suppressing the emission of carbon monoxide (CO). An exhaust gas purification system includes a three-way catalyst and a particulate filter and a control device. The three-way catalyst and the particulate filter are arranged respectively on an upstream side and a downstream side of an exhaust channel connected to an internal combustion engine. The control device controls the internal combustion engine so as to execute fuel cut during a deceleration operation of the internal combustion engine. The particulate filter includes a honeycomb substrate and an outflow cell side catalyst layer. The honeycomb substrate includes a porous partition wall defining a plurality of cells extending from an inflow side end surface to an outflow side end surface. The plurality of cells include an inflow cell and an outflow cell adjacent across the partition wall. The inflow cell has an open inflow side end and a sealed outflow side end.Type: GrantFiled: July 6, 2023Date of Patent: November 12, 2024Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATIONInventors: Koji Sugiura, Seiji Nakahigashi, Masatoshi Ikebe, Takaya Ota, Takeshi Morishima, Eiji Harada
-
Patent number: 12138618Abstract: The present invention provides an exhaust gas purification catalyst including a base material 11 and a catalyst layer 20 provided on the base material 11. The catalyst layer 20 includes: a catalyst metal; and a carrying material 21 carrying the catalyst metal. The carrying material 21 includes: an OSC material 22 having an oxygen storage capacity; and a carrier 23 other than the OSC material. The OSC material 22 has a mean particle diameter Dx of 1.5 ?m or more which is larger than the mean particle diameter Dy of the carrier 23 other than the OSC material 22.Type: GrantFiled: July 30, 2020Date of Patent: November 12, 2024Assignee: Cataler CorporationInventors: Takaya Ota, Shunsuke Oishi, Ryosuke Takasu
-
Publication number: 20240342654Abstract: A wall-flow type particulate filter includes: a wall-flow type base material; and a coat layer formed on the base material. The base material includes: an inlet cell open only at an exhaust gas inlet end; an outlet cell open only at an exhaust gas outlet end; and a partition partitioning the inlet and outlet cells and having multiple pores through which the inlet and outlet cells communicate with each other. The coat layer is provided for the wall surfaces of the pores and contains a first inorganic oxide and a second inorganic oxide. The mean particle diameter Da of the first inorganic oxide is larger than the mean particle diameter Db of the second inorganic oxide. The weight ratio of the second inorganic oxide is designed to be from 10% to 50% inclusive when the total weight ratio of the first inorganic oxide and the second inorganic oxide is 100%.Type: ApplicationFiled: October 18, 2022Publication date: October 17, 2024Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Kohei TAKASAKI, Keisuke MURAWAKI, Masatoshi IKEBE, Takeshi MORISHIMA, Takaya OTA, Koji SUGIURA, Takeshi HIRABAYASHI, Akemi SATOU
-
Patent number: 12036510Abstract: An exhaust gas purification device suppresses a pressure loss increase and includes a honeycomb substrate and inflow cell side catalyst layer. The substrate includes a porous partition wall defining several cells extending from an inflow side end surface to an outflow side end surface. The cells include an inflow and outflow cell adjacent across the wall. The inflow cell has an open inflow side end and sealed outflow side end. The outflow cell has a sealed inflow side end and open outflow side end. The catalyst layer is on an inflow cell side surface in an region extending from the inflow side end positioned 10% or more of the partition wall length. At this position, a filled portion of the inflow cell side catalyst layer pores are 40% or less. The pores are present to a depth of 50% of a thickness of the partition wall.Type: GrantFiled: April 11, 2022Date of Patent: July 16, 2024Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATIONInventors: Akemi Sato, Takeshi Hirabayashi, Koji Sugiura, Keisuke Murawaki, Takaya Ota, Masatoshi Ikebe, Kohei Takasaki, Takeshi Morishima
-
Patent number: 11918986Abstract: There is provided an exhaust gas purification device that shows a high HC removal performance under a condition in which a rich air-fuel mixture is introduced. The exhaust gas purification device includes a substrate, a first catalyst layer, and a second catalyst layer. The substrate includes an upstream end and a downstream end. The first catalyst layer is disposed on a surface of the partition wall in an upstream region including the upstream end of the substrate. The second catalyst layer is disposed inside the partition wall in a downstream region including the downstream end of the substrate. The first catalyst layer contains a first metal catalyst and alumina-zirconia composite oxide. The second catalyst layer contains a second metal catalyst.Type: GrantFiled: May 24, 2022Date of Patent: March 5, 2024Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATIONInventors: Koji Sugiura, Takeshi Hirabayashi, Akemi Satou, Keisuke Murawaki, Takaya Ota, Masatoshi Ikebe, Kohei Takasaki, Takeshi Morishima
-
Publication number: 20240018891Abstract: Provided is an exhaust gas purification system that allows suppressing the emission of carbon monoxide (CO). An exhaust gas purification system includes a three-way catalyst and a particulate filter and a control device. The three-way catalyst and the particulate filter are arranged respectively on an upstream side and a downstream side of an exhaust channel connected to an internal combustion engine. The control device controls the internal combustion engine so as to execute fuel cut during a deceleration operation of the internal combustion engine. The particulate filter includes a honeycomb substrate and an outflow cell side catalyst layer. The honeycomb substrate includes a porous partition wall defining a plurality of cells extending from an inflow side end surface to an outflow side end surface. The plurality of cells include an inflow cell and an outflow cell adjacent across the partition wall. The inflow cell has an open inflow side end and a sealed outflow side end.Type: ApplicationFiled: July 6, 2023Publication date: January 18, 2024Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATIONInventors: Koji SUGIURA, Seiji NAKAHIGASHI, Masatoshi IKEBE, Takaya OTA, Takeshi MORISHIMA, Eiji HARADA
-
Publication number: 20230249159Abstract: An exhaust gas purification catalyst showing resistance to peeling and high purification performance is provided. The present invention is an exhaust gas purification catalyst including a base material and a catalyst layer disposed on the base material. The catalyst layer includes a catalytic metal, a first metal oxide, and a second metal oxide having a higher heat resistance than that of the first metal oxide. When Dx is an area-based average particle diameter of the first metal oxide determined from an arbitrary cross section of the catalyst layer and Dy is an area-based particle diameter of the second metal oxide 22 measured from the cross section of the catalyst layer, a ratio of the Dy to the Dx (Dy/Dx) is 5 or more, and the Dy is 7 ?m or more. In the catalyst layer, pore volume of pores having pore diameters 30 nm or more measured by a nitrogen adsorption method is 0.28 cm3/g or more.Type: ApplicationFiled: June 28, 2021Publication date: August 10, 2023Inventors: Ryosuke Takasu, Shunsuke Oishi, Takaya Ota
-
Patent number: 11679379Abstract: The exhaust gas purification device includes a substrate, a first catalyst layer, and a second catalyst layer. The substrate includes an upstream end, a downstream end, and a porous partition wall defining a plurality of cells extending between the upstream end and the downstream end. The plurality of cells include an inlet cell opening at the upstream end and sealed at the downstream end, and an outlet cell adjacent to the inlet cell sealed at the upstream end and opening at the downstream end. The first catalyst layer is disposed on a surface of the partition wall in an upstream region. In a downstream region, the second catalyst layer is disposed inside the partition wall, and a second catalyst-containing wall including the partition wall and the second catalyst layer has a porosity of 35% or more.Type: GrantFiled: May 2, 2022Date of Patent: June 20, 2023Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATIONInventors: Koji Sugiura, Takeshi Hirabayashi, Akemi Satou, Keisuke Murawaki, Takaya Ota, Masatoshi Ikebe, Kohei Takasaki, Takeshi Morishima
-
Patent number: 11633724Abstract: Methods for exhaust gas purification, including the steps of: attaching an exhaust gas purification catalyst to an exhaust system of an internal combustion engine, and supplying an exhaust gas to the exhaust gas purification catalyst, where the exhaust gas purification catalyst includes an upper layer containing first carrier particles which are particles of an inorganic oxide and rhodium, and a lower layer containing second carrier particles which are particles of an inorganic oxide, the upper layer includes a rhodium-rich portion near the surface of the upper layer on the upstream side of the exhaust gas flow, and the existence range of the rhodium-rich portion is in a range of greater than 50% to 80% of the length of the upper layer from a downstream side end of an exhaust gas flow and of less than 20 ?m in the depth direction from an outermost surface of the upper layer.Type: GrantFiled: July 11, 2022Date of Patent: April 25, 2023Assignees: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Shunsuke Oishi, Takaya Ota, Yoshinori Saito, Seiji Nakahigashi, Isao Chinzei, Hiromasa Suzuki
-
Patent number: 11607672Abstract: Methods for exhaust gas purification, including the steps of: attaching an exhaust gas purification catalyst to an exhaust system of an internal combustion engine, and supplying an exhaust gas to the exhaust gas purification catalyst, where the exhaust gas purification catalyst includes an upper layer containing first carrier particles which are particles of an inorganic oxide and rhodium, and a lower layer containing second carrier particles which are particles of an inorganic oxide, the upper layer includes a rhodium-rich portion near the surface of the upper layer on the upstream side of the exhaust gas flow, and the existence range of the rhodium-rich portion is in a range of greater than 50% to 80% of the length of the upper layer from a downstream side end of an exhaust gas flow and of less than 20 ?m in the depth direction from an outermost surface of the upper layer.Type: GrantFiled: July 11, 2022Date of Patent: March 21, 2023Assignees: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Shunsuke Oishi, Takaya Ota, Yoshinori Saito, Seiji Nakahigashi, Isao Chinzei, Hiromasa Suzuki
-
Publication number: 20230078076Abstract: In accordance with the technology herein disclosed, an exhaust gas purification catalyst exhibiting a high exhaust gas purifying performance using a new rare earth-containing material is provided. The exhaust gas purification catalyst herein disclosed includes a base material and a catalyst layer formed on the surface of the base material. The catalyst layer of such an exhaust gas purification catalyst includes rare earth-carrying alumina 50 including a primary particle of a rare earth particle 40 including at least one rare earth element carried on the surface of an alumina carrier 30 including alumina, and the average particle diameter D50 based on TEM observation of the rare earth particle 40 in the rare earth-carrying alumina 50 is 10 nm or less.Type: ApplicationFiled: December 7, 2020Publication date: March 16, 2023Inventors: Shunsuke Oishi, Takaya Ota, Taku Miura, Hiromi Togashi, Ryosuke Takasu
-
Patent number: 11524285Abstract: The exhaust gas purification catalyst device includes an upper layer which includes first carrier particles and rhodium, and a lower layer which includes second carrier particles, and the upper layer includes a rhodium enriched area in the range a, from the upstream end in the exhaust gas flow to 50% of the upper layer length, and a range b from the upper layer top surface to 18 ?m in the depth direction. The rhodium enriched area contains at least 50% and less than 100% of all the rhodium in the upper layer.Type: GrantFiled: January 25, 2019Date of Patent: December 13, 2022Assignees: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Shunsuke Oishi, Takaya Ota, Isao Chinzei, Hiromasa Suzuki, Yoshinori Saito, Seiji Nakahigashi
-
Publication number: 20220387983Abstract: There is provided an exhaust gas purification device that shows a high HC removal performance under a condition in which a rich air-fuel mixture is introduced. The exhaust gas purification device includes a substrate, a first catalyst layer, and a second catalyst layer. The substrate includes an upstream end and a downstream end. The first catalyst layer is disposed on a surface of the partition wall in an upstream region including the upstream end of the substrate. The second catalyst layer is disposed inside the partition wall in a downstream region including the downstream end of the substrate. The first catalyst layer contains a first metal catalyst and alumina-zirconia composite oxide. The second catalyst layer contains a second metal catalyst.Type: ApplicationFiled: May 24, 2022Publication date: December 8, 2022Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATIONInventors: Koji SUGIURA, Takeshi HIRABAYASHI, Akemi SATOU, Keisuke MURAWAKI, Takaya OTA, Masatoshi IKEBE, Kohei TAKASAKI, Takeshi MORISHIMA
-
Publication number: 20220370997Abstract: The exhaust gas purification device includes a substrate, a first catalyst layer, and a second catalyst layer. The substrate includes an upstream end, a downstream end, and a porous partition wall defining a plurality of cells extending between the upstream end and the downstream end. The plurality of cells include an inlet cell opening at the upstream end and sealed at the downstream end, and an outlet cell adjacent to the inlet cell sealed at the upstream end and opening at the downstream end. The first catalyst layer is disposed on a surface of the partition wall in an upstream region. In a downstream region, the second catalyst layer is disposed inside the partition wall, and a second catalyst-containing wall including the partition wall and the second catalyst layer has a porosity of 35% or more.Type: ApplicationFiled: May 2, 2022Publication date: November 24, 2022Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATIONInventors: Koji SUGIURA, Takeshi HIRABAYASHI, Akemi SATOU, Keisuke MURAWAKI, Takaya OTA, Masatoshi IKEBE, Kohei TAKASAKI, Takeshi MORISHIMA
-
Publication number: 20220347626Abstract: An exhaust gas purification device suppresses a pressure loss increase and includes a honeycomb substrate and inflow cell side catalyst layer. The substrate includes a porous partition wall defining several cells extending from an inflow side end surface to an outflow side end surface. The cells include an inflow and outflow cell adjacent across the wall. The inflow cell has an open inflow side end and sealed outflow side end. The outflow cell has a sealed inflow side end and open outflow side end. The catalyst layer is on an inflow cell side surface in an region extending from the inflow side end positioned 10% or more of the partition wall length. At this position, a filled portion of the inflow cell side catalyst layer pores are 40% or less. The pores are present to a depth of 50% of a thickness of the partition wall.Type: ApplicationFiled: April 11, 2022Publication date: November 3, 2022Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATIONInventors: Akemi SATO, Takeshi HIRABAYASHI, Koji SUGIURA, Keisuke MURAWAKI, Takaya OTA, Masatoshi IKEBE, Kohei TAKASAKI, Takeshi MORISHIMA
-
Publication number: 20220339606Abstract: Methods for exhaust gas purification, including the steps of: attaching an exhaust gas purification catalyst to an exhaust system of an internal combustion engine, and supplying an exhaust gas to the exhaust gas purification catalyst, where the exhaust gas purification catalyst includes an upper layer containing first carrier particles which are particles of an inorganic oxide and rhodium, and a lower layer containing second carrier particles which are particles of an inorganic oxide, the upper layer includes a rhodium-rich portion near the surface of the upper layer on the upstream side of the exhaust gas flow, and the existence range of the rhodium-rich portion is in a range of greater than 50% to 80% of the length of the upper layer from a downstream side end of an exhaust gas flow and of less than 20 ?m in the depth direction from an outermost surface of the upper layer.Type: ApplicationFiled: July 11, 2022Publication date: October 27, 2022Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Shunsuke OISHI, Takaya OTA, Yoshinori SAITO, Seiji NAKAHIGASHI, Isao CHINZEI, Hiromasa SUZUKI
-
Patent number: 11473472Abstract: An exhaust gas control apparatus includes a honeycomb substrate and an inlet cell-side catalyst layer. The honeycomb substrate includes a porous partition wall that defines a plurality of cells extending from an inlet-side end face to an outlet-side end face. The cells include an inlet cell and an outlet cell that are adjacent to each other with the partition wall therebetween. The inlet cell is open at its inlet-side end and is sealed at its outlet-side end. The outlet cell is sealed at its inlet-side end and is open at its outlet-side end. The inlet cell-side catalyst layer is provided on a surface on the inlet cell side of the partition wall and extends from an inlet-side end of the partition wall. Porosity of the inlet cell-side catalyst layer is in a specific range.Type: GrantFiled: April 15, 2021Date of Patent: October 18, 2022Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATIONInventors: Koji Sugiura, Hiromasa Nishioka, Naoto Miyoshi, Akemi Satou, Keisuke Murawaki, Masatoshi Ikebe, Takaya Ota, Ryota Nakashima, Hirotaka Ori