Patents by Inventor Takayuki Hiromitsu

Takayuki Hiromitsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11704911
    Abstract: In an apparatus for identifying an obstacle around a vehicle, an acquirer is configured to acquire an image captured by a camera mounted to the vehicle. An extractor is configured to extract feature points of the image. A generator is configured to generate an optical flow that is a movement vector from each of the feature points of the image acquired before the current time to a corresponding feature point of the image acquired at the current time. A classifier configured to classify the optical flows into groups each corresponding to an object in the image based on pixel positions of the feature points. An identifier is configured to, for each of the groups that the optical flows are classified by the classifier into, identify whether an object corresponding to the group in the image is a stationary object or a moving object based on a degree of variability in lengths of the optical flows of the group.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: July 18, 2023
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takuya Miwa, Takayuki Hiromitsu, Masumi Fukuman, Akihiro Kida
  • Patent number: 11460574
    Abstract: A collision determination apparatus includes an acquisition section, a filtering section, a target object information detection section, a target object path prediction section, an own vehicle path prediction section, a collision determination section, and a vehicle control section. The acquisition section (21) acquires detection information based on a reflected wave from a search device. The filtering section filters the detection information. The target object information detection section detects a position of a target object using the filtered detection information. The target object path prediction section predicts a path of the target object based on changes in the detected position of the target object. The own vehicle path prediction section predicts a path of an own vehicle. The collision determination section determines a risk of collision between the own vehicle and the target object. The vehicle control section executes a vehicle control.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 4, 2022
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki Hiromitsu, Shinji Kitaura, Akihiro Kida
  • Patent number: 11417115
    Abstract: An obstacle recognition device of a vehicle provided with a camera capturing an image around the vehicle, includes an acquiring unit sequentially acquiring the image captured by the camera; a feature point extracting unit extracting a plurality of feature points of an object included in the image; a calculation unit calculating each motion distance of the plurality of feature points between the image previously acquired and the image currently acquired by the acquiring unit; a first determination unit determining whether each motion distance of the feature points is larger than or equal to a first threshold; a second determination unit determining whether each motion distance of the feature points is larger than or equal to a second threshold; and an obstacle recognition unit recognizing an obstacle.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: August 16, 2022
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koki Osada, Takayuki Hiromitsu, Tomoyuki Fujimoto, Takuya Miwa, Yutaka Hamamoto, Masumi Fukuman, Akihiro Kida, Kunihiro Sugihara
  • Patent number: 11393220
    Abstract: An obstacle identification apparatus acquires an image that is captured by a camera that is mounted to a vehicle. The obstacle identification apparatus calculates a first gradient that is a gradient in a first direction of a luminance value of pixels in the image and a second gradient that is a gradient of the luminance value in a second direction orthogonal to the first direction of the first gradient. Based on the first gradient and the second gradient, the obstacle identification apparatus estimates a shadow boundary that is a boundary between an own-vehicle shadow that is a shadow of the own vehicle and an object outside the vehicle. Based on the estimated shadow boundary, the obstacle identification apparatus estimates the own-vehicle shadow.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: July 19, 2022
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takuya Miwa, Takayuki Hiromitsu, Yutaka Hamamoto, Masumi Fukuman, Akihiro Kida, Kunihiro Sugihara
  • Patent number: 11340348
    Abstract: A collision determination apparatus includes an acquisition section, a setting section, a target object information detection section, a target object path prediction section, an own vehicle path prediction section, and a collision determination section. The acquisition section acquires detection information based on a reflected wave from a search device. The setting section sets filter characteristics of a filtering process used when the detection information is filtered. The target object information detection section detects a position of a target object using the filtered detection information. The target object path prediction section predicts a path of the target object based on changes in the position of the target object detected by the target object information detection section. The own vehicle path prediction section predicts a path of an own vehicle. The collision determination section makes a determination of a collision between the own vehicle and the target object.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: May 24, 2022
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki Hiromitsu, Shinji Kitaura, Akihiro Kida
  • Patent number: 11136013
    Abstract: In a vehicle control apparatus, an acquiring unit acquires detection information from a probe apparatus based on reflected waves thereof. A target object information detecting unit detects a position of a target object. A target object route estimating unit estimates a route of the target object. An own vehicle route estimating unit estimates a route of an own vehicle. A collision determining unit determines whether the own vehicle and the target object will collide. A vehicle control unit performs vehicle control of the own vehicle when the own vehicle and the target object are determined to collide. An area setting unit sets a non-operating area for vehicle control. The area setting unit sets, as the non-operating area, a predetermined area with reference to a position in which the target object is detected, in a lateral direction that is orthogonal to an advancing direction of the own vehicle.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 5, 2021
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki Hiromitsu, Shinji Kitaura, Akihiro Kida
  • Patent number: 11100800
    Abstract: A collision determination apparatus includes: an own vehicle route estimating unit that estimates a route of an own vehicle; a target object route estimating unit that estimates a route of a target object; and a collision determining unit that performs a collision determination regarding the own vehicle and the target object. When the own vehicle route estimating unit estimates the route of the own vehicle to be circular arc-shaped, the collision determining unit divides a circular arc indicating the route of the own vehicle into a plurality of circular arcs, approximates each of the divided circular arcs as a straight line by connecting an end point and an end point of each of the divided circular arcs, and performs the collision determination based on whether any of the approximated straight lines and the route of the target object intersect.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: August 24, 2021
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinji Kitaura, Takayuki Hiromitsu, Akihiro Kida
  • Publication number: 20210110176
    Abstract: An obstacle identification apparatus acquires an image that is captured by a camera that is mounted to a vehicle. The obstacle identification apparatus calculates a first gradient that is a gradient in a first direction of a luminance value of pixels in the image and a second gradient that is a gradient of the luminance value in a second direction orthogonal to the first direction of the first gradient. Based on the first gradient and the second gradient, the obstacle identification apparatus estimates a shadow boundary that is a boundary between an own-vehicle shadow that is a shadow of the own vehicle and an object outside the vehicle. Based on the estimated shadow boundary, the obstacle identification apparatus estimates the own-vehicle shadow.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 15, 2021
    Inventors: Takuya Miwa, Takayuki Hiromitsu, Yutaka Hamamoto, Masumi Fukuman, Akihiro Kida, Kunihiro Sugihara
  • Publication number: 20210110175
    Abstract: In an apparatus for identifying an obstacle around a vehicle, an acquirer is configured to acquire an image captured by a camera mounted to the vehicle. An extractor is configured to extract feature points of the image. A generator is configured to generate an optical flow that is a movement vector from each of the feature points of the image acquired before the current time to a corresponding feature point of the image acquired at the current time. A classifier configured to classify the optical flows into groups each corresponding to an object in the image based on pixel positions of the feature points. An identifier is configured to, for each of the groups that the optical flows are classified by the classifier into, identify whether an object corresponding to the group in the image is a stationary object or a moving object based on a degree of variability in lengths of the optical flows of the group.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 15, 2021
    Inventors: Takuya MIWA, Takayuki HIROMITSU, Masumi FUKUMAN, Akihiro KIDA
  • Publication number: 20210109543
    Abstract: An obstacle identification apparatus acquires an image that is captured by a camera mounted to a vehicle. The obstacle identification apparatus calculates a first gradient that is a gradient in a first direction of a luminance value of pixels in the image and a second gradient that is a gradient of the luminance value in a second direction orthogonal to the first direction of the first gradient. Based on the first gradient and the second gradient, the obstacle identification apparatus estimates an own-vehicle shadow boundary. Based on the estimated own-vehicle shadow boundary, the obstacle identification apparatus estimates an own-vehicle shadow. Based on a luminance value of the estimated own-vehicle shadow, the obstacle identification apparatus estimates an object shadow that is a shadow of an object differing from the own-vehicle shadow.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 15, 2021
    Inventors: Takayuki HIROMITSU, Tomoyuki FUJIMOTO, Masumi FUKUMAN, Akihiro KIDA
  • Publication number: 20210110177
    Abstract: An obstacle recognition device of a vehicle provided with a camera capturing an image around the vehicle, includes an acquiring unit sequentially acquiring the image captured by the camera; a feature point extracting unit extracting a plurality of feature points of an object included in the image; a calculation unit calculating each motion distance of the plurality of feature points between the image previously acquired and the image currently acquired by the acquiring unit; a first determination unit determining whether each motion distance of the feature points is larger than or equal to a first threshold; a second determination unit determining whether each motion distance of the feature points is larger than or equal to a second threshold; and an obstacle recognition unit recognizing an obstacle.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 15, 2021
    Inventors: Koki OSADA, Takayuki HIROMITSU, Tomoyuki FUJIMOTO, Takuya MIWA, Yutaka HAMAMOTO, Masumi FUKUMAN, Akihiro KIDA, Kunihiro SUGIHARA
  • Patent number: 10948592
    Abstract: An obstacle detection apparatus for vehicles includes: a first probe wave sensor detecting a direct wave distance as a distance to an obstacle by transmitting a probe wave and receiving a reflection wave of the probe wave reflected by the obstacle; a second probe wave sensor receiving the reflection wave to detect an indirect wave distance as a distance to the obstacle by receiving the reflection wave; an approach determinator determining whether the obstacle is present between the first probe wave sensor and the second probe wave sensor and whether the obstacle is approaching the vehicle; and a distance determinator determining an obstacle distance to be less than or equal to a predetermined distance range when the indirect wave distance falls out of the distance range as the obstacle is present between the first probe wave sensor and the second probe wave sensor and the obstacle is approaching the vehicle.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: March 16, 2021
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsuyasu Matsuura, Tsuyoshi Ando, Takayuki Hiromitsu, Motonari Ohbayashi, Hironobu Ishijima
  • Publication number: 20200074860
    Abstract: A collision determination apparatus includes: an own vehicle route estimating unit that estimates a route of an own vehicle; a target object route estimating unit that estimates a route of a target object; and a collision determining unit that performs a collision determination regarding the own vehicle and the target object. When the own vehicle route estimating unit estimates the route of the own vehicle to be circular arc-shaped, the collision determining unit divides a circular arc indicating the route of the own vehicle into a plurality of circular arcs, approximates each of the divided circular arcs as a straight line by connecting an end point and an end point of each of the divided circular arcs, and performs the collision determination based on whether any of the approximated straight lines and the route of the target object intersect.
    Type: Application
    Filed: October 30, 2017
    Publication date: March 5, 2020
    Inventors: Shinji KITAURA, Takayuki HIROMITSU, Akihiro KIDA
  • Publication number: 20200064464
    Abstract: A collision determination apparatus includes an acquisition section, a filtering section, a target object information detection section, a target object path prediction section, an own vehicle path prediction section, a collision determination section, and a vehicle control section. The acquisition section (21) acquires detection information based on a reflected wave from a search device. The filtering section filters the detection information. The target object information detection section detects a position of a target object using the filtered detection information. The target object path prediction section predicts a path of the target object based on changes in the detected position of the target object. The own vehicle path prediction section predicts a path of an own vehicle. The collision determination section determines a risk of collision between the own vehicle and the target object. The vehicle control section executes a vehicle control.
    Type: Application
    Filed: October 30, 2017
    Publication date: February 27, 2020
    Inventors: Takayuki HIROMITSU, Shinji KITAURA, Akihiro KIDA
  • Publication number: 20190275993
    Abstract: In a vehicle control apparatus, an acquiring unit acquires detection information from a probe apparatus based on reflected waves thereof. A target object information detecting unit detects a position of a target object. A target object route estimating unit estimates a route of the target object. An own vehicle route estimating unit estimates a route of an own vehicle. A collision determining unit determines whether the own vehicle and the target object will collide. A vehicle control unit performs vehicle control of the own vehicle when the own vehicle and the target object are determined to collide. An area setting unit sets a non-operating area for vehicle control. The area setting unit sets, as the non-operating area, a predetermined area with reference to a position in which the target object is detected, in a lateral direction that is orthogonal to an advancing direction of the own vehicle.
    Type: Application
    Filed: October 30, 2017
    Publication date: September 12, 2019
    Inventors: Takayuki HIROMITSU, Shinji KITAURA, Akihiro KIDA
  • Publication number: 20190271777
    Abstract: A collision determination apparatus includes an acquisition section, a setting section, a target object information detection section, a target object path prediction section, an own vehicle path prediction section, and a collision determination section. The acquisition section acquires detection information based on a reflected wave from a search device. The setting section sets filter characteristics of a filtering process used when the detection information is filtered. The target object information detection section detects a position of a target object using the filtered detection information. The target object path prediction section predicts a path of the target object based on changes in the position of the target object detected by the target object information detection section. The own vehicle path prediction section predicts a path of an own vehicle. The collision determination section makes a determination of a collision between the own vehicle and the target object.
    Type: Application
    Filed: October 30, 2017
    Publication date: September 5, 2019
    Inventors: Takayuki HIROMITSU, Shinji KITAURA, Akihiro KIDA
  • Patent number: 10077045
    Abstract: A parking assist system includes an electronic control unit configured to: estimate first extending directions of obstacles respectively located on right and left sides of a target parking space in a state where a host vehicle moves across in front of the target parking space; calculate a planned moving path based on the estimated first extending directions; as the host vehicle is guided into the target parking space, estimate second extending directions of the obstacles respectively located on the right and left sides of the target parking space while updating the second extending directions; determine whether the estimated and updated second extending directions satisfy a predetermined condition; and when the updated second extending directions satisfy the predetermined condition, update the planned moving path by using the updated second extending directions instead of the first extending directions or the second extending directions before being updated.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: September 18, 2018
    Assignees: AISIN SEIKI KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Yusuke Kiyokawa, Masaya Kato, Masaki Kinoshita, Takayuki Hiromitsu
  • Patent number: 10054683
    Abstract: An obstacle detection apparatus includes: a transceiver transmitting a transmission wave and receiving an ultrasonic wave; a transmission controller; a receiver circuit detecting a signal level of a receiving wave; a distance calculator sequentially calculating a distance to an object reflecting the transmission wave; a memory storing the distance to the object; an obstacle determinator determining whether the object is an obstacle; and a reception level monitoring device monitoring the signal level of the receiving wave before the transmission wave being transmitted. When the signal level exceeds a predetermined threshold, the obstacle determinator sets a first number of determination data elements to an increased number of determinations for a predetermined period to be used for determining whether the object is the obstacle, as being larger than a second number of determination data elements used when the signal level does not exceed the predetermined threshold.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: August 21, 2018
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsuyasu Matsuura, Tsuyoshi Ando, Takayuki Hiromitsu, Motonari Ohbayashi, Hironobu Ishijima
  • Publication number: 20170299720
    Abstract: An obstacle detection apparatus includes: a transceiver transmitting a transmission wave and receiving an ultrasonic wave; a transmission controller; a receiver circuit detecting a signal level of a receiving wave; a distance calculator sequentially calculating a distance to an object reflecting the transmission wave; a memory storing the distance to the object; an obstacle determinator determining whether the object is an obstacle; and a reception level monitoring device monitoring the signal level of the receiving wave before the transmission wave being transmitted. When the signal level exceeds a predetermined threshold, the obstacle determinator sets a first number of determination data elements to an increased number of determinations for a predetermined period to be used for determining whether the object is the obstacle, as being larger than a second number of determination data elements used when the signal level does not exceed the predetermined threshold.
    Type: Application
    Filed: October 21, 2015
    Publication date: October 19, 2017
    Inventors: Mitsuyasu Matsuura, Tsuyoshi Ando, Takayuki Hiromitsu, Motonari Ohbayashi, Hironobu Ishijima
  • Publication number: 20170219702
    Abstract: An obstacle detection apparatus for vehicles includes: a first probe wave sensor detecting a direct wave distance as a distance to an obstacle by transmitting a probe wave and receiving a reflection wave of the probe wave reflected by the obstacle; a second probe wave sensor receiving the reflection wave to detect an indirect wave distance as a distance to the obstacle by receiving the reflection wave; an approach determinator determining whether the obstacle is present between the first probe wave sensor and the second probe wave sensor and whether the obstacle is approaching the vehicle; and a distance determinator determining an obstacle distance to be less than or equal to a predetermined distance range when the indirect wave distance falls out of the distance range as the obstacle is present between the first probe wave sensor and the second probe wave sensor and the obstacle is approaching the vehicle.
    Type: Application
    Filed: October 21, 2015
    Publication date: August 3, 2017
    Inventors: Mitsuyasu Matsuura, Tsuyoshi Ando, Takayuki Hiromitsu, Motonari Ohbayashi, Hironobu Ishijima