Patents by Inventor Takayuki IHARA

Takayuki IHARA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944983
    Abstract: An electrostatic separation method includes: applying voltage between a lower electrode at a bottom portion of or in the raw material layer and an upper electrode above the raw material layer, generating an electric field between electrodes; fluidizing the raw material layer and bringing conductive particles and the lower electrode into contact in the raw material layer charging only the conductive particles wherein their polarity becomes the same as the lower electrode; generating polarity, the same as the upper electrode, by dielectric polarization on a conveyor belt downward-facing conveyance surface passing through a capture region above the raw material layer and under the upper electrode, the conveyance surface including a nonconductor; separates charged conductive particles from the raw material layer surface by electrostatic force and adhering conductive particles to the conveyor belt conveyance surface; and separating and collecting the particles from the conveyance surface that moved outside the ele
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: April 2, 2024
    Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Takayuki Ihara, Koki Ikeda, Naoya Ogiyama, Yusuke Iida, Manabu Masamoto, Koji Fukumoto, Gen Kiyotaki, Keiichi Mashio, Tomoyuki Suzuki, Ryoma Yamamoto
  • Publication number: 20230405604
    Abstract: An electrostatic separator separates conductive particles from raw materials includes: a container with a raw material layer; a gas dispersion plate at the bottom of the raw material layer; at least one vibrating body in the raw material layer flush with the gas dispersion plate or above it; a fluidization gas supplier introduced from the container bottom into the raw material layer flows upward through the gas dispersion plate; an upper electrode above the raw material layer; a lower electrode in the raw material layer, the lower electrode being flush with the gas dispersion plate or above it; a power supply applies a voltage between the upper and lower electrode wherein one becomes a negative electrode, the other becomes a positive electrode, and an electric field is generated between them; and a capturer captures conductive particles that have flown out of the raw material layer surface toward the upper electrode.
    Type: Application
    Filed: October 23, 2020
    Publication date: December 21, 2023
    Applicant: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Takayuki IHARA, Koki IKEDA, Naoya OGIYAMA, Yusuke IIDA, Manabu MASAMOTO, Koji FUKUMOTO, Gen KIYOTAKI, Keiichi MASHIO, Tomoyuki SUZUKI, Ryoma YAMAMOTO
  • Publication number: 20230398553
    Abstract: An electrostatic separation method includes: applying voltage between a lower electrode at a bottom portion of or in the raw material layer and an upper electrode above the raw material layer, generating an electric field between electrodes; fluidizing the raw material layer and bringing conductive particles and the lower electrode into contact in the raw material layer charging only the conductive particles wherein their polarity becomes the same as the lower electrode; generating polarity, the same as the upper electrode, by dielectric polarization on a conveyor belt downward-facing conveyance surface passing through a capture region above the raw material layer and under the upper electrode, the conveyance surface including a nonconductor; separates charged conductive particles from the raw material layer surface by electrostatic force and adhering conductive particles to the conveyor belt conveyance surface; and separating and collecting the particles from the conveyance surface that moved outside the ele
    Type: Application
    Filed: October 19, 2021
    Publication date: December 14, 2023
    Applicant: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Takayuki IHARA, Koki IKEDA, Naoya OGIYAMA, Yusuke IIDA, Manabu MASAMOTO, Koji FUKUMOTO, Gen KIYOTAKI, Keiichi MASHIO, Tomoyuki SUZUKI, Ryoma YAMAMOTO
  • Publication number: 20230081521
    Abstract: The present invention relates to a technique for treating a raw material, such as combustible waste, and more particularly to combustion, and pyrolysis and gasification treatment techniques that does not emit carbon dioxide into the atmosphere. A treatment apparatus includes a fluidized-bed furnace having a pyrolysis chamber and a combustion chamber therein, the pyrolysis chamber and the combustion chamber are separated by a partition wall, an electrolysis device configured to electrolyze water to generate hydrogen and oxygen, a methanation reactor configured to produce methane from carbon dioxide discharged from the combustion chamber and the hydrogen, a first fluidizing-gas supply line configured to supply a first fluidizing gas to the pyrolysis chamber, and a second fluidizing-gas supply line configured to introduce a second fluidizing gas to the combustion chamber, the second fluidizing gas including the oxygen and a part of the carbon dioxide.
    Type: Application
    Filed: December 8, 2020
    Publication date: March 16, 2023
    Applicant: EBARA ENVIRONMENTAL PLANT CO., LTD.
    Inventors: Takayuki IHARA, Takashi FUJIWARA, Norihisa MIYOSHI
  • Publication number: 20230025336
    Abstract: The pyrolysis apparatus includes a fluid bed furnace (1), a first partition wall (11) dividing inside of the fluid bed furnace (1) into a pyrolysis chamber (4) and a combustion chamber (5), a second partition wall (12) dividing the combustion chamber (5) into a main combustion chamber (6) and a settling combustion chamber (7), a first gas diffuser (15), a second gas diffuser (25), and a third gas diffuser (35) configured to supply a first fluidizing gas, a second fluidizing gas, and a third fluidizing gas to the pyrolysis chamber (4), the main combustion chamber (6), and the settling combustion chamber (7), respectively, a first raw-material supply device (71) configured to supply a first raw material to the pyrolysis chamber (4) with a first supply amount, a second raw-material supply device (72) configured to supply a second raw material to the pyrolysis chamber (4) with a second supply amount, and an operation controller (200) configured to independently control operations of the first raw-material supply
    Type: Application
    Filed: December 7, 2020
    Publication date: January 26, 2023
    Applicant: EBARA ENVIRONMENTAL PLANT CO., LTD.
    Inventors: Takashi FUJIWARA, Takayuki IHARA