Patents by Inventor Takayuki Inuzuka

Takayuki Inuzuka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6376125
    Abstract: An object is to provide with good productivity a practical lithium ion secondary battery which secures lightness in weight and safety without using a firm battery case and has reduced internal resistivity. The lithium ion secondary battery comprises a tabular roll type laminated electrode body in which a band-formed positive electrode (3) comprising a positive electrode active material layer (7) and a positive electrode current collector (6) alternates with a band-formed negative electrode (5) comprising a negative electrode active material layer (9) and a negative electrode current collector (10), having therebetween a band-formed rolled separator (4) which holds a lithium ion-containing electrolytic solution, the positive electrode (3) or the negative electrode (5) being adhered with two separators (4) by an adhesive layer (11).
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: April 23, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Hisashi Shiota, Shigeru Aihara, Daigo Takemura, Jun Aragane, Hiroaki Urushibata, Kouji Hamano, Yasuhiro Yoshida, Takayuki Inuzuka, Michio Murai
  • Patent number: 6352797
    Abstract: The invention is a high-performance lithium ion secondary battery which needs no firm case so that it is possible to reduce the size and weight and to design the shape freely and yet which secures high structural strength and safety. The method of the invention for forming a lithium ion battery comprises the step of joining a positive electrode (3) having a positive electrode active material layer (32) joined to a positive electrode current collector (31) and a negative electrode (5) having a negative electrode active material layer (52) joined to a negative electrode current collector (51) with an adhesive resin (6) comprising at least partially a plastic resin being present in parts therebetween and the step of deforming the adhesive resin (6). The method achieves simplification and improvement of productivity in forming a lithium ion battery.
    Type: Grant
    Filed: November 16, 1999
    Date of Patent: March 5, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuhiro Yoshida, Michio Murai, Takayuki Inuzuka, Kouji Hamano, Hisashi Shiota, Shigeru Aihara, Daigo Takemura, Jun Aragane, Hiroaki Urushibata
  • Publication number: 20020018930
    Abstract: To obtain a lithium ion secondary battery having excellent charge and discharge characteristics in which electric connection between electrodes can be maintained without requiring a strong armor metal case, so that it can be made into thin forms having large energy density.
    Type: Application
    Filed: October 3, 2001
    Publication date: February 14, 2002
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Kouji Hamano, Yasuhiro Yoshida, Hisashi Shiota, Shou Shiraga, Shigeru Aihara, Michio Murai, Takayuki Inuzuka
  • Patent number: 6338920
    Abstract: A uniform mixture of a powdered active material 1, conductive fiber 2, and a binder resin is applied to a polytetrafluoroethylene plate, etc. to a prescribed thickness and dried to form a sheet electrode 8. A pair of electrodes 8 are adhered to a separator 9 to make an electrode laminate 10. A battery is formed of the electrode laminate 10 or a plurality of the electrode laminates 10.
    Type: Grant
    Filed: February 3, 1998
    Date of Patent: January 15, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuhiro Yoshida, Hisashi Shiota, Shigeru Aihara, Kouji Hamano, Michio Murai, Takayuki Inuzuka, Syo Shiraga
  • Patent number: 6322599
    Abstract: A method of fabricating a lithium ion secondary battery, wherein a positive electrode 3 is prepared by bonding a positive electrode active material layer 7 to a positive electrode collector 6, a negative electrode 5 is prepared by bonding a negative electrode active material layer 9 to a negative electrode collector 10 and a separator 4 which is arranged between these two electrodes and closely adhered thereto by bonding, using a fluoride containing adhesive resin mixed with N-methylpyrrolidone solvent and in which the N-methylpyrrolidone solvent is evaporated to produce through holes, which communicate the positive electrode active material layer 7 and the negative electrode active material layer 9 with the separator 4.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: November 27, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kouji Hamano, Yasuhiro Yoshida, Hisashi Shiota, Shou Shiraga, Shigeru Aihara, Michio Murai, Takayuki Inuzuka
  • Publication number: 20010037557
    Abstract: It is an object of the invention to provide a process for producing a lithium ion battery comprising adhering a positive and a negative electrode to an ion conducting layer (separator) with an adhesive resin thereby to obtain sufficient joint strength between the electrodes and the separator while securing ion conductivity among the positive and negative electrodes and the separator. The steps of heating an adhesive liquid (4) which is a mixture of a solvent and a resin and in which the resin is not completely dissolved at or below room temperature and applying the heated adhesive liquid to the adhesive surface of the separator (3) or of the electrode (1 or 2), superposing the separator and the electrodes with their adhesive surfaces facing each other, and drying the applied adhesive liquid are carried out in order. The solubility of the resin is increased when the adhesive liquid is to be applied to make uniform application feasible.
    Type: Application
    Filed: October 5, 1999
    Publication date: November 8, 2001
    Inventors: YASUHIRO YOSHIDA, MICHIO MURAI, TAKAYUKI INUZUKA, SHIGERU AIHARA, DAIGO TAKEMURA, HISASHI SHIOTA, JUN ARAGANE, HIROAKI URUSHIBATA, KOUJI HAMANO
  • Patent number: 6291102
    Abstract: An object is to provide a lithium ion secondary battery which maintains the electrical connections between each active material layer and a separator without using a firm housing, can have an increased energy density, can take an arbitrary shape, such as a thin shape, exhibits excellent charge and discharge characteristics, and has a large battery capacity. Positive and negative electrode active material particles are bonded to their respective current collectors to form a positive electrode and a negative electrode. The positive and the negative electrode active material layers are joined to a separator with a binder resin so that the joint strength between the separator and the positive and the negative electrode active material layers may be equal to or greater than the joint strength between the positive and the negative electrode active material layers and the respective current collectors to prepare a tabular laminated battery body having a plurality of electrode laminates.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: September 18, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuhiro Yoshida, Kouji Hamano, Hisashi Shiota, Shigeru Aihara, Takayuki Inuzuka, Michio Murai, Sho Shiraga
  • Publication number: 20010011417
    Abstract: A paste-like active material mixture prepared by mixing an active material powder and a particulate material comprising a polymer soluble in a nonaqueous electrolytic solution is applied to, e.g. collectors 1c and 2c to a uniform thickness, and then dried to form positive and negative electrodes 1, 2 containing an active material powder and a particulate polymer. The two electrodes are assembled into an electrode laminate into which the foregoing electrolytic solution is then injected.
    Type: Application
    Filed: March 16, 2001
    Publication date: August 9, 2001
    Applicant: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuhiro Yoshida, Kouji Hamano, Takayuki Inuzuka, Michio Murai, Hisashi Shiota, Shigeru Aihara, Syo Shiraga
  • Publication number: 20010009736
    Abstract: An object is to provide with good productivity a practical lithium ion secondary battery which secures lightness in weight and safety without using a firm battery case and has reduced internal resistivity. The lithium ion secondary battery comprises a tabular roll type laminated electrode body in which a band-formed positive electrode (3) comprising a positive electrode active material layer (7) and a positive electrode current collector (6) alternates with a band-formed negative electrode (5) comprising a negative electrode active material layer (9) and a negative electrode current collector (10), having therebetween a band-formed rolled separator (4) which holds a lithium ion-containing electrolytic solution, the positive electrode (3) or the negative electrode (5) being adhered with two separators (4) by an adhesive layer (11).
    Type: Application
    Filed: March 16, 2001
    Publication date: July 26, 2001
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Hisashi Shiota, Shigeru Aihara, Daigo Takemura, Jun Aragane, Hiroaki Urushibata, Kouji Hamano, Yasuhiro Yoshida, Takayuki Inuzuka, Michio Murai
  • Publication number: 20010008726
    Abstract: To provide an adhesive for obtaining reliability over a broad temperature range. In a lithium ion secondary battery having a positive electrode 1, a negative electrode 4, and a separator 7 holding an electrolytic solution, an adhesive 8 containing an organic vinyl compound having at least two vinyl groups per molecule is applied between the positive electrode 1 and the separator 7 and between the negative electrode 4 and the separator 7 and cured by reaction to join them.
    Type: Application
    Filed: February 9, 1998
    Publication date: July 19, 2001
    Inventors: MICHIO MURAI, TAKAYUKI INUZUKA, YASUHIRO YOSHIDA, KOUJI HAMANO, HISASHI SHIOTA, SHIGERU AIHARA, SYO SHIRAGA
  • Publication number: 20010006750
    Abstract: As to the batteries containing an organic low molecular compound in the space between the positive and negative electrodes, there has been a risk of unusual conditions such as ignition because the organic low molecular compound in liquid was released from the above space to the outside, when there was heating of the battery and the like.
    Type: Application
    Filed: February 22, 2001
    Publication date: July 5, 2001
    Inventors: Yasuhiro Yoshida, Osamu Hiroi, Kouji Hamano, Daigo Takemura, Sigeru Aihara, Hisashi Shiota, Jun Aragane, Hiroaki Urushibata, Michio Murai, Takayuki Inuzuka
  • Publication number: 20010005560
    Abstract: Conventional separators had a function that their melting made minute holes inside the separator smaller, leading to cut off of ion conductivity in temperature increase due to unusual conditions such as short circuit. However, there was a problem that, at a temperature higher than a certain degree, not only the minute holes were closed but also the separator itself was melted to cause deformation of the separator such as shrink and generation of holes due to melting and insulation was broken.
    Type: Application
    Filed: February 22, 2001
    Publication date: June 28, 2001
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Yasuhiro Yoshida, Osamu Hiroi, Kouji Hamano, Daigo Takemura, Sigeru Aihara, Hisashi Shiota, Jun Aragane, Hiroaki Urushibata, Michio Murai, Takayuki Inuzuka
  • Patent number: 6235066
    Abstract: An object is to provide a process for producing a compact lithium ion secondary battery which exhibits high and stable performance and can take an arbitrary shape such as a thin shape. A process for producing a battery comprised of a positive electrode (1), a negative electrode (4), a separator (7) and an electrolytic solution comprises applying a binder resin solution mainly comprising a fluorocarbon resin or polyvinyl alcohol to a separator (7), laying a positive electrode (1) and a negative electrode (4) alternately on the separator (7) to form a laminated battery body having a plurality of laminates (12), drying the laminated battery body under pressure to form a tabular laminated battery body, and impregnating the tabular laminated battery body with an electrolytic solution.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: May 22, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takayuki Inuzuka, Yasuhiro Yoshida, Michio Murai, Kouji Hamano, Hisashi Shiota, Shigeru Aihara, Sho Shiraga
  • Patent number: 6231626
    Abstract: A paste-like active material mixture prepared by mixing an active material powder and a particulate material comprising a polymer soluble in a nonaqueous electrolytic solution is applied to, e.g., collectors 1c and 2c to a uniform thickness, and then dried to form positive and negative electrodes 1, 2 containing an active material powder and a particulate polymer. The two electrodes are assembled into an electrode laminate into which the foregoing electrolytic solution is then injected.
    Type: Grant
    Filed: February 3, 1998
    Date of Patent: May 15, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuhiro Yoshida, Kouji Hamano, Takayuki Inuzuka, Michio Murai, Hisashi Shiota, Shigeru Aihara, Syo Shiraga
  • Patent number: 6232014
    Abstract: A practical lithium ion secondary battery. The battery is light in weight and is safe without using a firm battery case. It also has reduced internal resistivity. The battery includes a tabular roll-type laminated electrode body in which a band-formed positive electrode alternates with a band-formed negative electrode, with a band-formed rolled separator being placed therebetween. The positive electrode includes a positive electrode active material layer and a positive electrode current collector. The negative electrode includes a negative electrode active material layer and a negative electrode current collector. The separator holds a lithium ion-containing electrolytic solution. The positive electrode or the negative electrode is adhered with two separators by an adhesive layer.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: May 15, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Hisashi Shiota, Shigeru Aihara, Daigo Takemura, Jun Aragane, Hiroaki Urushibata, Kouji Hamano, Yasuhiro Yoshida, Takayuki Inuzuka, Michio Murai
  • Patent number: 6225010
    Abstract: A lithium ion secondary battery. The battery maintains an electrical connection between electrodes without using a firm case and can have an increased energy density at a reduced thickness while exhibiting excellent charge and discharge characteristics. The battery includes a plurality of electrode laminates each having a positive electrode, a negative electrode and a separator. The positive electrode includes a positive electrode active material layer and a positive electrode current collector. The negative electrode includes a negative electrode active material layer and a negative electrode current collector. This separator is impregnated with a lithium ion-containing electrolytic solution and is interposed between the electrodes in intimate contact. The positive electrode, negative electrode and separator are joined together in intimate contact with porous adhesive resin layers having through holes.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: May 1, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kouji Hamano, Yasuhiro Yoshida, Hisashi Shiota, Shigeru Aihara, Michio Murai, Takayuki Inuzuka, Sho Shiraga
  • Patent number: 6136471
    Abstract: Positive and negative active material particles 7a and 9a are adhered to the respective current collectors 6 and 8 by means of a binder resin 11 to prepare positive and negative electrodes 3 and 5. The positive and negative electrode active material layers 7 and 9 are adhered to a separator 4 with the binder resin 11 so that the interlaminar strength between each active material layer 7, 9 and the separator 4 may be not lower than that between the active material layer 7, 9 and the respective current collector 10, 9. A lithium ion-containing electrolytic solution is held in voids 12 made in the active material layers 7, 9 and the separator 4 to complete an electrical connection between the electrodes.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: October 24, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuhiro Yoshida, Kouji Hamano, Hisashi Shiota, Shou Shiraga, Shigeru Aihara, Takayuki Inuzuka, Michio Murai
  • Patent number: 6124061
    Abstract: To obtain a lithium ion secondary battery having excellent charge and discharge characteristics in which electric connection between electrodes can be maintained without requiring a strong armor metal case, so that it can be made into thin forms having large energy density.
    Type: Grant
    Filed: December 3, 1997
    Date of Patent: September 26, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kouji Hamano, Yasuhiro Yoshida, Hisashi Shiota, Shou Shiraga, Shigeru Aihara, Michio Murai, Takayuki Inuzuka
  • Patent number: 6051342
    Abstract: In a lithium ion secondary battery which is composed of a positive electrode 1, a negative electrode 4 and a separator 7 which contains a Li ion-containing non-aqueous electrolytic solution, both of the ionic conductivity and adhesion strength were ensured by making an adhesive resin layer 8 which bonds the positive electrode 1 to the separator 7 and the negative electrode 4 to the separator 7 into a mixture phase consisting of an electrolytic solution phase 9, an electrolytic solution-containing a polymer gel phase 10 and a polymer solid phase 11.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: April 18, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kouji Hamano, Yasuhiro Yoshida, Hisashi Shiota, Shou Shiraga, Shigeru Aihara, Michio Murai, Takayuki Inuzuka
  • Patent number: 6024773
    Abstract: To provide a process for producing a lithium ion secondary battery which can have any arbitrary shape, such as thin shape, and yet exhibits high performance. In a method of fabricating a battery comprising a positive electrode 1, a negative electrode 4, and a separator 7, a binder resin solution mainly comprising polyvinylidene fluoride is applied to the separator 7, and the positive electrode 1 and the negative electrode 4 are laid thereon, followed by drying to form a battery laminate, which is then impregnated with an electrolytic solution.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: February 15, 2000
    Assignee: Mitsushita Denki Kabushiki Kaisha
    Inventors: Takayuki Inuzuka, Yasuhiro Yoshida, Michio Murai, Kouji Hamano, Hisashi Shiota, Shou Shiraga, Shigeru Aihara