Patents by Inventor Takayuki Oka

Takayuki Oka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958187
    Abstract: A robot includes a base attached to an end of a robotic arm, a conveyor fixed to the base, and a holder to hold a workpiece and place the workpiece on a transferring surface of the conveyor. The holder includes a pivot shaft extending along the conveyor in a transferring direction of the conveyor, and reciprocatable or telescopic in the transferring direction, a pivoting structure attached to the pivot shaft so as to be reciprocatable in the transferring direction, and pivotable centering on the pivot shaft in a plane in which a width direction perpendicular to the transferring direction intersects with a height direction perpendicular to the transferring direction and the width direction, and a holding structure upstream of the pivoting part in the transferring direction to hold the workpiece.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: April 16, 2024
    Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Kentaro Azuma, Takayuki Ishizaki, Mitsunobu Oka, Masataka Yoshida
  • Publication number: 20240119643
    Abstract: An image processing device includes: an object information acquisition unit configured to acquire information on a first object; an object detection unit configured to detect from image data the first object and a second object associated with the first object; and a display mode change unit configured to change a display mode of the second object when the first object is detected and the second object is not a predetermined human face, and not change the display mode of the second object when the first object is detected and the second object is a predetermined human face.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 11, 2024
    Inventors: Hisashi Oka, Tetsuji Suzuki, Takayuki Sugahara
  • Publication number: 20240093896
    Abstract: An information processing device has a control unit that acquires information relating to a fluctuation of power consumed by an electrical product operating around a user, and that estimates a product consumed by the user and a consumption quantity of the product based on the information relating to the fluctuation in the power.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toyokazu NAKASHIMA, Takayuki HATORI, Shuichi SAWADA, Daiki KUBO, Tomoki ISHIKAWA, Naoya OKA
  • Patent number: 11434548
    Abstract: This free-cutting copper alloy comprises 75.4-78.7% Cu, 3.05-3.65% Si, 0.10-0.28% Sn, 0.05-0.14% P, and at least 0.005% to less than 0.020% Pb, with the remainder comprising Zn and inevitable impurities. The composition satisfies the following relations: 76.5?f1=Cu+0.8×Si?8.5×Sn+P?80.3; 60.7?f2=Cu?4.6×Si?0.7×Sn?P?62.1; and 0.25?f7=P/Sn?1.0. The area percentage (%) of respective constituent phases satisfies the following relations: 28???67; 0???1.0; 0???0.2; 0???1.5; 97.4?f3=?+?; 99.4?f4=?+?+?+?; 0?f5=?+??2.0; and 30?f6=?+6×?1/2+0.5×??70. The long side of the ? phase is at most 40 ?m, the long side of the ? phase is at most 25 ?m, and ? phase is present in ? phase.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: September 6, 2022
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Keiichiro Oishi, Kouichi Suzaki, Shinji Tanaka, Takayuki Oka
  • Publication number: 20200165706
    Abstract: This free-cutting copper alloy comprises 75.4-78.7% Cu, 3.05-3.65% Si, 0.10-0.28% Sn, 0.05-0.14% P, and at least 0.005% to less than 0.020% Pb, with the remainder comprising Zn and inevitable impurities. The composition satisfies the following relations: 76.5?f1=Cu+0.8×Si?8.5×Sn+P?80.3; 60.7?f2=Cu?4.6×Si?0.7×Sn?P?62.1; and 0.25?f7=P/Sn?1.0. The area percentage (%) of respective constituent phases satisfies the following relations: 28???67; 0???1.0; 0???0.2; 0???1.5; 97.4?f3=?+?; 99.4?f4=?+?+?+?; 0?f5=?+??2.0; and 30?f6=?+6×?1/2+0.5×??70. The long side of the ? phase is at most 40 ?m, the long side of the ? phase is at most 25 ?m, and ? phase is present in ? phase.
    Type: Application
    Filed: February 21, 2018
    Publication date: May 28, 2020
    Inventors: Keiichiro Oishi, Kouichi Suzaki, Shinji Tanaka, Takayuki Oka
  • Patent number: 10557185
    Abstract: This free-cutting copper alloy contains 75.0%-78.5% Cu, 2.95%-3.55% Si, 0.07%-0.28% Sn, 0.06%-0.14% P, and 0.022%-0.25% Pb, with the remainder being made up of Zn and inevitable impurities. The composition satisfies the following relations: 76.2?f1=Cu+0.8×Si?8.5×Sn+P+0.5×Pb?80.3, 61.5?f2=Cu?4.3×Si?0.7×Sn?P+0.5×Pb?63.3. The area ratios (%) of the constituent phases satisfy the following relations: 25???65, 0???1.5, 0???0.2, 0???2.0, 97.0?f3=?+?, 99.4?f4=?+?+?+?, 0?f5=?+??2.5, 27?f6=?+6×?1/2+0.5×??70. The long side of the ? phase does not exceed 40 ?m, the long side of the ? phase does not exceed 25 ?m, and the ? phase is present within the ? phase.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: February 11, 2020
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Keiichiro Oishi, Kouichi Suzaki, Shinji Tanaka, Takayuki Oka
  • Patent number: 10538828
    Abstract: This free-cutting copper alloy contains 75.0 %-78.5% Cu, 2.95%-3.55% Si, 0.07%-0.28% Sn, 0.06%-0.14% P, and 0.022%-0.25% Pb, with the remainder being made up of Zn and inevitable impurities. The composition satisfies the following relations: 76.2?f1=Cu+0.8×Si?8.5×Sn+P+0.5×Pb?80.3, 61.5?f2=Cu?4.3×Si?0.7×Sn?P+0.5×Pb?63.3. The area ratios (%) of the constituent phases satisfy the following relations: 25???65, 0???1.5, 0???0.2, 0???2.0, 97.0?f3=?+?, 99.4?f4=?+?+?+?, 0?f5=?+??2.5, 27?f6=?+6×?1/2+0.5×??70. The long side of the ? phase does not exceed 40 ?m, the long side of the ? phase does not exceed 25 ?m, and the ? phase is present within the ? phase.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: January 21, 2020
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Keiichiro Oishi, Kouichi Suzaki, Shinji Tanaka, Takayuki Oka
  • Publication number: 20190249276
    Abstract: This free-cutting copper alloy contains 75.0%-78.5% Cu, 2.95%-3.55% Si, 0.07%-0.28% Sn, 0.06%-0.14% P, and 0.022%-0.25% Pb, with the remainder being made up of Zn and inevitable impurities. The composition satisfies the following relations: 76.2?f1=Cu+0.8×Si?8.5×Sn+P+0.5×Pb?80.3, 61.5?f2=Cu?4.3×Si?0.7×Sn?P+0.5×Pb?63.3. The area ratios (%) of the constituent phases satisfy the following relations: 25???65, 0???1.5, 0???0.2, 0???2.0, 97.0?f3=?+?, 99.4?f4=?+?+?+?, 0?f5=?+??2.5, 27?f6=?+6×?1/2+0.5×??70. The long side of the ? phase does not exceed 40 ?m, the long side of the ? phase does not exceed 25 ?m, and the ? phase is present within the ? phase.
    Type: Application
    Filed: August 15, 2017
    Publication date: August 15, 2019
    Inventors: Keiichiro Oishi, Kouichi Suzaki, Shinji Tanaka, Takayuki Oka
  • Publication number: 20190241999
    Abstract: This free-cutting copper alloy contains 75.0%-78.5% Cu, 2.95%-3.55% Si, 0.07%-0.28% Sn, 0.06%-0.14% P, and 0.022%-0.25% Pb, with the remainder being made up of Zn and inevitable impurities. The composition satisfies the following relations: 76.2?f1=Cu+0.8×Si?8.5×Sn+P+0.5×Pb?80.3, 61.5?f2=Cu?4.3×Si?0.7×Sn?P+0.5×Pb?63.3. The area ratios (%) of the constituent phases satisfy the following relations: 25???65, 0???1.5, 0???0.2, 0???2.0, , 97.0?f3=?+?, 99.4?f4=?+?+?+?, 0?f5=?+??2.5, 27?f6=?+6×?1/2+0.5×??70. The long side of the ? phase does not exceed 40 ?m, the long side of the ? phase does not exceed 25 ?m, and the ? phase is present within the ? phase.
    Type: Application
    Filed: February 13, 2019
    Publication date: August 8, 2019
    Inventors: Keiichiro Oishi, Kouichi Suzaki, Shinji Tanaka, Takayuki Oka
  • Patent number: 9970908
    Abstract: A gradient liquid feed device allows reduction in size of a high performance liquid chromatography type sample analyzer. The gradient liquid feed device includes a plurality of carrier liquid reservoir tanks configured to store carrier liquids of mutually different compositions, a plurality of single plunger pumps capable of drawing and discharging the carrier liquid from the plurality of carrier liquid reservoir tanks, a mixer configured to mix the carrier liquids discharged from the plurality of liquid feed pumps and feed the mixed carrier liquid, and a pulse damper in communication with the mixer and configured to absorb pulsation that may occur during liquid feeding. The single plunger pumps have a function for variably setting a length of stroke for drawing and discharging the carrier liquid and a function for variably setting a ratio between the carrier liquid drawing time and the carrier liquid discharge time.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: May 15, 2018
    Assignee: Sekisui Medical Co., Ltd.
    Inventors: Takuya Yotani, Hiroaki Taira, Takayuki Oka, Hideki Muraki
  • Patent number: 9841406
    Abstract: A switching valve includes: (A) a rotor including: (1) a center pipe connection port, (2) a first in-valve flow path in communication with the center pipe connection port, and (3) an arc-like second in-valve flow path; (B) a stator including: (4) a first pipe connection port group which is brought into communication independently with the center pipe connection port via the first in-valve flow path when the rotor is turned, and (5) a second pipe connection port group which is brought into mutual communication via the second in-valve flow path when the rotor is turned; and (C) an arrangement of the rotor and the stator satisfying the following relationship: the state of communication or non-communication among the second pipe connection port group via the second in-valve flow path is switched in accordance with the state of communication between the first pipe connection port group and the center pipe connection port.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: December 12, 2017
    Assignee: Sekisui Medical Co., Ltd.
    Inventors: Takuya Yotani, Hiroaki Taira, Takayuki Oka, Hideki Muraki
  • Patent number: 9810604
    Abstract: Provided is a sample injection device for flow-type analysis including a cylindrical needle (27) which penetrates through an upper wall and a lower wall of a sample injection portion (22) of a carrier-liquid channel through ring-like sealing members (25, 26). The needle (27) includes an inner hole (41) which is closed on a side of a lower end of the needle (27) and open on an outer peripheral surface as a horizontal hole (42). The needle moving unit (44) induces the needle (27) to move downward so that the horizontal hole (42) faces an inside of a sample vessel (40) to draw the sample to the inside of the needle (27). Then the moving unit (44) induces the needle (27) to move upward so that the horizontal hole (42) faces an inside of the sample injection portion (22) to inject the sample in the inside of the needle (27). At an intermediate position, washing liquid is discharged from the horizontal hole (42) of the needle (27), and the washing liquid is recovered via a discharge path (15).
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: November 7, 2017
    Assignee: Sekisui Medical Co., Ltd.
    Inventors: Takuya Yotani, Takayuki Oka, Hideki Muraki
  • Patent number: 9778232
    Abstract: A cylindrical column body (101) holds a filler. A pair of end caps (105, 106) covers both ends of the column body (101) and has a flow hole for a carrier liquid (111, 112) arranged in the center thereof. An end surface on the side of a large diameter portion (113a, 114a) of a pair of columnar joint members (113, 114) contacts an end surface of the pair of end caps (105, 106) and also has a communication hole (115, 116) arranged in the center thereof. A sealing member (117, 118) is arranged on a contact surface between the end cap (105, 106) and the joint member (113, 114). A bottomed cylindrical case (121) accommodates the pair of end caps (105, 106) and a large diameter portion of the pair of joint members (113, 114) in an engaged state. A cover member (124) is detachably installed on a side of an opening of the case (121).
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: October 3, 2017
    Assignee: Sekisui Medical Co., Ltd.
    Inventors: Takuya Yotani, Takayuki Oka, Hideki Muraki
  • Patent number: 9714886
    Abstract: When injecting a sample into carrier-liquid channels (3A and 3B), injection shock is prevented. Septa 13 and 14 constitute the upper wall and the lower wall of a sample injection part (11) of the carrier-liquid channels (3A and 3B). A needle (27) can vertically penetrate the septum (13) on the upper wall side and also penetrate the septum (14) on the lower wall side. A needle moving unit (28) induces the needle (27) to penetrate the septum (14) on the lower wall side and induces the tip of the needle to face the inside of a sample vessel (26). A measurement pump (29) is operated for drawing and as a result a sample is drawn into the needle (27). Next, the needle (27) is extracted from the septum (14) on the lower wall side, the tip of the needle is induced to face the inside of the sample injection part (11), the measurement pump (29) is caused to discharge and as a result the sample within the needle (27) is injected.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: July 25, 2017
    Assignee: Sekisui Medical Co., Ltd.
    Inventors: Takayuki Oka, Takuya Yotani, Hideki Muraki
  • Publication number: 20160153942
    Abstract: A gradient liquid feed device allows reduction in size of a high performance liquid chromatography type sample analyzer. The gradient liquid feed device includes a plurality of carrier liquid reservoir tanks configured to store carrier liquids of mutually different compositions, a plurality of single plunger pumps capable of drawing and discharging the carrier liquid from the plurality of carrier liquid reservoir tanks, a mixer configured to mix the carrier liquids discharged from the plurality of liquid feed pumps and feed the mixed carrier liquid, and a pulse damper in communication with the mixer and configured to absorb pulsation that may occur during liquid feeding. The single plunger pumps have a function for variably setting a length of stroke for drawing and discharging the carrier liquid and a function for variably setting a ratio between the carrier liquid drawing time and the carrier liquid discharge time.
    Type: Application
    Filed: July 17, 2014
    Publication date: June 2, 2016
    Applicant: SEKISUI MEDICAL CO., LTD.
    Inventors: Takuya Yotani, Hiroaki Taira, Takayuki Oka, Hideki Muraki
  • Publication number: 20160103103
    Abstract: A cylindrical column body (101) holds a filler. A pair of end caps (105, 106) covers both ends of the column body (101) and has a flow hole for a carrier liquid (111, 112) arranged in the center thereof. An end surface on the side of a large diameter portion (113a, 114a) of a pair of columnar joint members (113, 114) contacts an end surface of the pair of end caps (105, 106) and also has a communication hole (115, 116) arranged in the center thereof. A sealing member (117, 118) is arranged on a contact surface between the end cap (105, 106) and the joint member (113, 114). A bottomed cylindrical case (121) accommodates the pair of end caps (105, 106) and a large diameter portion of the pair of joint members (113, 114) in an engaged state. A cover member (124) is detachably installed on a side of an opening of the case (121).
    Type: Application
    Filed: March 11, 2014
    Publication date: April 14, 2016
    Inventors: Takuya Yotani, Takayuki Oka, Hideki Muraki
  • Patent number: 9310342
    Abstract: A liquid chromatography apparatus is provided with a sample preparation unit, a column that separates components of a sample, an eluent supplier that includes a feeder for supplying eluents to the column, a flow path directional valve capable of introducing fixed amounts of the sample and the eluents to the column, an analyzer for analyzing a test solution composed of the sample components separated by the column and one of the eluents, and a controller, wherein the eluent supplier supplies the eluents to the flow path directional valve in an unmixed state. As a result of employing this configuration, analysis time is shortened and eluent consumption is reduced.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: April 12, 2016
    Assignees: ARKRAY, Inc., Sekisui Medical Co., Ltd.
    Inventors: Toshikatsu Sakai, Akira Sezaki, Takeshi Takagi, Takuya Yotani, Makoto Takahara, Takayuki Oka
  • Patent number: 9304139
    Abstract: An object of the present invention is to provide a method for analyzing hemoglobins which can accurately separate hemoglobins in a short time by liquid chromatography. The method for analyzing hemoglobins by liquid chromatography includes pretreating a sample with an oxidant and a binder for trivalent heme iron.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: April 5, 2016
    Assignee: SEKISUI MEDICAL CO., LTD.
    Inventors: Hiroaki Taira, Takayuki Oka
  • Publication number: 20160061788
    Abstract: A switching valve includes: (A) a rotor including: (1) a center pipe connection port, (2) a first in-valve flow path in communication with the center pipe connection port, and (3) an arc-like second in-valve flow path; (B) a stator including: (4) a first pipe connection port group which is brought into communication independently with the center pipe connection port via the first in-valve flow path when the rotor is turned, and (5) a second pipe connection port group which is brought into mutual communication via the second in-valve flow path when the rotor is turned; and (C) an arrangement of the rotor and the stator satisfying the following relationship: the state of communication or non-communication among the second pipe connection port group via the second in-valve flow path is switched in accordance with the state of communication between the first pipe connection port group and the center pipe connection port.
    Type: Application
    Filed: April 22, 2014
    Publication date: March 3, 2016
    Applicant: Sekisui Medical Co., Ltd.
    Inventors: Takuya Yotani, Hiroaki Taira, Takayuki Oka, Hideki Muraki
  • Publication number: 20160041072
    Abstract: Provided is a sample injection device for flow-type analysis including a cylindrical needle (27) which penetrates through an upper wall and a lower wall of a sample injection portion (22) of a carrier-liquid channel through ring-like sealing members (25, 26). The needle (27) includes an inner hole (41) which is closed on a side of a lower end of the needle (27) and open on an outer peripheral surface as a horizontal hole (42). The needle moving unit (44) induces the needle (27) to move downward so that the horizontal hole (42) faces an inside of a sample vessel (40) to draw the sample to the inside of the needle (27). Then the moving unit (44) induces the needle (27) to move upward so that the horizontal hole (42) faces an inside of the sample injection portion (22) to inject the sample in the inside of the needle (27). At an intermediate position, washing liquid is discharged from the horizontal hole (42) of the needle (27), and the washing liquid is recovered via a discharge path (15).
    Type: Application
    Filed: March 27, 2014
    Publication date: February 11, 2016
    Applicant: SEKISUI MEDICAL CO., LTD.
    Inventors: Takuya Yotani, Takayuki Oka, Hideki Muraki