Patents by Inventor Takayuki Osaki

Takayuki Osaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10239048
    Abstract: The hydrogenation catalyst for heavy hydrocarbon oil, includes: as a carrier, phosphorous-zinc-containing alumina that contains 0.1% by mass to 4% by mass, in terms of oxide based on the carrier, of phosphorous and 1% by mass to 12% by mass, based on the carrier, of zinc oxide particles, and supporting, on the carrier, 8% by mass to 20% by mass, in terms of oxide based on the catalyst, of at least one selected from metals in Group 6 of the periodic table and 2% by mass to 6% by mass, in terms of oxide based on the catalyst, of at least one selected from metals in Groups 8 to 10 of the periodic table, and the average particle diameter of the zinc oxide particles being 2 ?m to 12 ?m.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: March 26, 2019
    Assignee: COSMO OIL CO., LTD.
    Inventors: Takayuki Osaki, Nobumasa Nakajima
  • Patent number: 10202553
    Abstract: The hydroprocessing catalyst for a heavy hydrocarbon oil, includes, as a carrier, a phosphorus-silica-containing alumina carrier containing 0.1% by mass to 4% by mass of phosphorus in terms of oxide based on the carrier, and 0.1% by mass to 1.5% by mass of silica based on the carrier, the carrier supporting 8% by mass to 20% by mass of at least one selected from metals in Group 6 of the periodic table in terms of oxide based on the catalyst and 2% by mass to 6% by mass of at least one selected from metals in Groups 8 to 10 of the periodic table in terms of oxide based on the catalyst.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: February 12, 2019
    Assignee: COSMO OIL CO., LTD.
    Inventors: Takayuki Osaki, Nobumasa Nakajima
  • Patent number: 10137436
    Abstract: The hydrogenation catalyst for heavy hydrocarbon oil includes: at least one of metals in Group 6 of the periodic table being held by a zinc-containing alumina carrier containing 1% by mass to 15% by mass of zinc oxide particles having an average particle diameter of 2 ?m to 12 ?m based on the carrier; the average pore diameter being 18 nm to 35 nm, and the specific surface area being 70 m2/g to 150 m2/g. Also, the hydrogenation method for heavy hydrocarbon oil, includes, a catalytic reaction of heavy hydrocarbon oil in the presence of the hydrogenation catalyst, under the conditions of a temperature of 300° C. to 420° C., a pressure of 3 MPa to 20 MPa, a hydrogen/oil ratio of 400 m3/m3 to 3,000 m3/m3, and a liquid space velocity of 0.1 h?1 to 3 h?1.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: November 27, 2018
    Assignee: COSMO OIL CO., LTD.
    Inventors: Takayuki Osaki, Nobumasa Nakajima
  • Patent number: 9908107
    Abstract: A hydrogenation treatment catalyst is provided for heavy hydrocarbon oil, in which a hydrogenation-active component is supported on a silica-containing porous alumina carrier containing 0.1% to 1.5% by mass of silica based on the carrier. The total pore volume is 0.55 to 0.75 mL/g. Of the total volume of pores having a pore diameter of 3 to 30 nm (1) 30% to 45% have a pore diameter of 5 to 10 nm, (2) 50% to 65% have a pore diameter of 10 to 15 nm, and (3) the total volume of pores having a pore diameter in a range of ±1 nm from the average pore diameter is 25% or more. The total volume of pores having a pore diameter of 30 nm or more is 3% or less. The average pore diameter of pores having a pore diameter of 10 to 30 nm is 10.5 to 13 nm.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: March 6, 2018
    Assignee: COSMO OIL CO., LTD.
    Inventors: Takayuki Osaki, Nobumasa Nakajima
  • Publication number: 20160230102
    Abstract: The hydroprocessing catalyst for a heavy hydrocarbon oil, includes, as a carrier, a phosphorus-silica-containing alumina carrier containing 0.1% by mass to 4% by mass of phosphorus in terms of oxide based on the carrier, and 0.1% by mass to 1.5% by mass of silica based on the carrier, the carrier supporting 8% by mass to 20% by mass of at least one selected from metals in Group 6 of the periodic table in terms of oxide based on the catalyst and 2% by mass to 6% by mass of at least one selected from metals in Groups 8 to 10 of the periodic table in terms of oxide based on the catalyst.
    Type: Application
    Filed: September 25, 2014
    Publication date: August 11, 2016
    Inventors: Takayuki OSAKI, Nobumasa NAKAJIMA
  • Publication number: 20160228858
    Abstract: A hydrogenation treatment catalyst is provided for heavy hydrocarbon oil, in which a hydrogenation-active component is supported on a silica-containing porous alumina carrier containing 0.1% to 1.5% by mass of silica based on the carrier. The total pore volume is 0.55 to 0.75 mL/g. Of the total volume of pores having a pore diameter of 3 to 30 nm (1) 30% to 45% have a pore diameter of 5 to 10 nm, (2) 50% to 65% have a pore diameter of 10 to 15 nm, and (3) the total volume of pores having a pore diameter in a range of ±1 nm from the average pore diameter is 25% or more. The total volume of pores having a pore diameter of 30 nm or more is 3% or less. The average pore diameter of pores having a pore diameter of 10 to 30 nm is 10.5 to 13 nm.
    Type: Application
    Filed: September 25, 2014
    Publication date: August 11, 2016
    Applicant: Cosmo Oil Co., Ltd.
    Inventors: Takayuki OSAKI, Nobumasa NAKAJIMA
  • Publication number: 20160220986
    Abstract: The hydrogenation catalyst for heavy hydrocarbon oil, includes: as a carrier, phosphorous-zinc-containing alumina that contains 0.1% by mass to 4% by mass, in terms of oxide based on the carrier, of phosphorous and 1% by mass to 12% by mass, based on the carrier, of zinc oxide particles, and supporting, on the carrier, 8% by mass to 20% by mass, in terms of oxide based on the catalyst, of at least one selected from metals in Group 6 of the periodic table and 2% by mass to 6% by mass, in terms of oxide based on the catalyst, of at least one selected from metals in Groups 8 to 10 of the periodic table, and the average particle diameter of the zinc oxide particles being 2 ?m to 12 ?m.
    Type: Application
    Filed: September 25, 2014
    Publication date: August 4, 2016
    Inventors: Takayuki OSAKI, Nobumasa NAKAJIMA
  • Publication number: 20160220985
    Abstract: The hydrogenation catalyst for heavy hydrocarbon oil includes: at least one of metals in Group 6 of the periodic table being held by a zinc-containing alumina carrier containing 1% by mass to 15% by mass of zinc oxide particles having an average particle diameter of 2 ?m to 12 ?m based on the carrier; the average pore diameter being 18 nm to 35 nm, and the specific surface area being 70 m2/g to 150 m2/g. Also, the hydrogenation method for heavy hydrocarbon oil, includes, a catalytic reaction of heavy hydrocarbon oil in the presence of the hydrogenation catalyst, under the conditions of a temperature of 300° C. to 420° C., a pressure of 3 MPa to 20 MPa, a hydrogen/oil ratio of 400 m3/m3 to 3,000 m3/m3, and a liquid space velocity of 0.1 h?1 to 3 h?1.
    Type: Application
    Filed: September 25, 2014
    Publication date: August 4, 2016
    Inventors: Takayuki OSAKI, Nobumasa NAKAJIMA
  • Patent number: 7361624
    Abstract: A catalyst for hydrotreating gas oil, which comprises an inorganic oxide support having provided thereon: at least one selected from metals in the Group 6 of the periodic table at from 10 to 30% by weight, at least one selected from metals in the Group 8 of the periodic table at from 1 to 15% by weight, phosphorus at from 1.5 to 6% by weight, and carbon at from 2 to 14% by weight, each in terms of a respective oxide amount based on the catalyst, wherein the catalyst has a specific surface area of from 220 to 300 m2/g, a pore volume of from 0.35 to 0.6 ml/g, and an average pore diameter of about from 65 to 95 ?; a process for producing the catalyst; and a method for hydrotreating gas oil, which comprises subjecting a gas oil fraction to a catalytic reaction in the presence of the catalyst under conditions at a hydrogen partial pressure of from 3 to 8 MPa, a temperature of from 300 to 420° C., and a liquid hourly space velocity of from 0.3 to 5 hr?1.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: April 22, 2008
    Assignee: Cosmo Oil Co., Ltd.
    Inventors: Takashi Fujikawa, Takayuki Osaki, Hiroshi Kimura, Hirofumi Mizuguchi, Minoru Hashimoto, Hiroyasu Tagami, Masahiro Kato
  • Publication number: 20030173256
    Abstract: A catalyst for hydrotreating gas oil, which comprises an inorganic oxide support having provided thereon: at least one selected from metals in the Group 6 of the periodic table at from 10 to 30% by weight, at least one selected from metals in the Group 8 of the periodic table at from 1 to 15% by weight, phosphorus at from 1.5 to 6% by weight, and carbon at from 2 to 14% by weight, each in terms of a respective oxide amount based on the catalyst, wherein the catalyst has a specific surface area of from 220 to 300 m2/g, a pore volume of from 0.35 to 0.6 ml/g, and an average pore diameter of about from 65 to 95 Å; a process for producing the catalyst; and a method for hydrotreating gas oil, which comprises subjecting a gas oil fraction to a catalytic reaction in the presence of the catalyst under conditions at a hydrogen partial pressure of from 3 to 8 MPa, a temperature of from 300 to 420° C., and a liquid hourly space velocity of from 0.3 to 5 hr−1.
    Type: Application
    Filed: February 11, 2003
    Publication date: September 18, 2003
    Inventors: Takashi Fujikawa, Takayuki Osaki, Hiroshi Kimura, Hirofumi Mizuguchi, Minoru Hashimoto, Hiroyasu Tagami, Masahiro Kato