Patents by Inventor Takayuki Uno
Takayuki Uno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12132025Abstract: There is provided a metal-coated Al bonding wire which can provide a sufficient bonding reliability of bonded parts of the bonding wire under a high temperature state where a semiconductor device using the metal-coated Al bonding wire is operated. The bonding wire includes a core wire of Al or Al alloy, and a coating layer of Ag, Au or an alloy containing them formed on the outer periphery of the core wire, and the bonding wire is characterized in that when measuring crystal orientations on a cross-section of the core wire in a direction perpendicular to a wire axis of the bonding wire, a crystal orientation <111> angled at 15 degrees or less to a wire longitudinal direction has a proportion of 30 to 90% among crystal orientations in the wire longitudinal direction. Preferably, the surface roughness of the wire is 2 ?m or less in terms of Rz.Type: GrantFiled: March 12, 2020Date of Patent: October 29, 2024Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL Chemical & Material Co., Ltd.Inventors: Takashi Yamada, Akihito Nishibayashi, Teruo Haibara, Daizo Oda, Motoki Eto, Tetsuya Oyamada, Takayuki Kobayashi, Tomohiro Uno
-
Patent number: 12090578Abstract: There is provided an Al bonding wire which can provide a sufficient bonding reliability of bonded parts of the bonding wire under a high temperature state where a semiconductor device using the Al bonding wire is operated. The bonding wire is composed of Al or Al alloy, and is characterized in that an average crystal grain size in a cross-section of a core wire in a direction perpendicular to a wire axis of the bonding wire is 0.01 to 50 ?m, and when measuring crystal orientations on the cross-section of the core wire in the direction perpendicular to the wire axis of the bonding wire, a crystal orientation <111> angled at 15 degrees or less to a wire longitudinal direction has a proportion of 30 to 90% among crystal orientations in the wire longitudinal direction.Type: GrantFiled: March 12, 2020Date of Patent: September 17, 2024Assignees: NIPPON MICROMETAL CORPORATION, NIPPON STEEL Chemical & Material Co., Ltd.Inventors: Takashi Yamada, Akihito Nishibayashi, Teruo Haibara, Daizo Oda, Motoki Eto, Tetsuya Oyamada, Takayuki Kobayashi, Tomohiro Uno
-
Patent number: 11826821Abstract: According to an embodiment, a method for manufacturing a joined metal member includes: disposing a first metal member inside a mold of an injection molding apparatus, the first metal member being made of a first metal material, unevenness being formed over a surface of the first metal member, and an oxide film being formed so as to cover the unevenness; and injecting a second metal material into the mold, and thereby molding a second metal member and joining the second metal member to the first metal member, the second metal material being, when it is injected into the mold, in a semi-molten state, or in a molten state in which a difference between a temperature of the second metal material and a liquidus temperature thereof is smaller than or equal to 30° C.Type: GrantFiled: April 14, 2022Date of Patent: November 28, 2023Assignees: THE JAPAN STEEL WORKS, LTD., DAICEL MIRAIZU LTD.Inventors: Takeshi Yamaguchi, Chikara Kawabe, Takayuki Uno, Kiyoshi Shimizu
-
Patent number: 11810713Abstract: Provided are a rare earth magnet precursor having a roughened structure on a surface or a rare earth magnet molded body having a roughened structure on a surface, and a method for manufacturing the same. In the rare earth magnet precursor or the rare earth magnet molded body, recesses and protrusions are formed on the surface having the roughened structure, and the recesses and protrusions satisfy at least one of the following (a) to (c): (a) an arithmetic mean height (Sa) (ISO 25178) from 5 to 300 ?m, (b) a maximum height (Sz) (ISO 25178) from 50 to 1500 ?m, and (c) a developed interfacial area ratio (Sdr) (ISO 25178) from 0.3 to 12.Type: GrantFiled: December 24, 2019Date of Patent: November 7, 2023Assignee: DAICEL MIRAIZU LTD.Inventors: Kiyoshi Shimizu, Masahiko Itakura, Norihisa Wada, Takayuki Uno
-
Publication number: 20230166357Abstract: A sealing method for sealing an opening of a metallic molded body with a resin molded body, the metallic molded body having a cavity therein and an opening connected to the cavity, includes a step of irradiating laser light onto a joining surface on a periphery of the opening of the metallic molded body in an energy density of 1 MW/cm2 or more and at an irradiation rate of 2000 mm/sec or more to roughen the surface, and a step of placing, in a mold, a portion including the joining surface of the metallic molded body roughened in the preceding step and sealing the opening with a resin molded body formed by injection molding or compression molding of a resin.Type: ApplicationFiled: January 30, 2023Publication date: June 1, 2023Inventors: Masahiko ITAKURA, Masahiro KATAYAMA, Takayuki UNO
-
Patent number: 11590608Abstract: A sealing method for sealing an opening of a metallic molded body with a resin molded body, the metallic molded body having a cavity therein and an opening connected to the cavity, includes a step of irradiating laser light onto a joining surface on a periphery of the opening of the metallic molded body in an energy density of 1 MW/cm2 or more and at an irradiation rate of 2000 mm/sec or more to roughen the surface, and a step of placing, in a mold, a portion including the joining surface of the metallic molded body roughened in the preceding step and sealing the opening with a resin molded body formed by injection molding or compression molding of a resin.Type: GrantFiled: December 11, 2017Date of Patent: February 28, 2023Assignee: DAICEL POLYMER LTD.Inventors: Masahiko Itakura, Masahiro Katayama, Takayuki Uno
-
Publication number: 20220347743Abstract: According to an embodiment, a method for manufacturing a joined metal member includes: disposing a first metal member inside a mold of an injection molding apparatus, the first metal member being made of a first metal material, unevenness being formed over a surface of the first metal member, and an oxide film being formed so as to cover the unevenness; and injecting a second metal material into the mold, and thereby molding a second metal member and joining the second metal member to the first metal member, the second metal material being, when it is injected into the mold, in a semi-molten state, or in a molten state in which a difference between a temperature of the second metal material and a liquidus temperature thereof is smaller than or equal to 30° C.Type: ApplicationFiled: April 14, 2022Publication date: November 3, 2022Inventors: Takeshi YAMAGUCHI, Chikara KAWABE, Takayuki UNO, Kiyoshi SHIMIZU
-
Patent number: 11407864Abstract: (A) A reinforcing fiber, (B) a resin particle, and (C) a matrix resin are combined to prepare a resin composition which improves a reinforcing effect by the reinforcing fiber. The reinforcing fiber (A) contains a carbon fiber. The resin particle (B) contains a semicrystalline thermoplastic resin, the semicrystalline thermoplastic resin in the resin particle (B) has an exothermic peak in a temperature range between a glass transition temperature of the semicrystalline thermoplastic resin and a melting point of the semicrystalline thermoplastic resin, the peak being determined by heating the resin particle (B) at a rate of 10° C./min. by differential scanning calorimetry (DSC), and the resin particle (B) has an average particle size of 3 to 40 ?m. The semicrystalline thermoplastic resin may be a polyamide resin having a melting point of not lower than 150° C. (particularly, a polyamide resin having an alicyclic structure and a glass transition temperature of not lower than 100° C.Type: GrantFiled: September 27, 2018Date of Patent: August 9, 2022Assignee: DAICEL-EVONIK LTD.Inventors: Mitsuteru Mutsuda, Yoshiki Nakaie, Takayuki Uno
-
Publication number: 20220084746Abstract: Provided are a rare earth magnet precursor having a roughened structure on a surface or a rare earth magnet molded body having a roughened structure on a surface, and a method for manufacturing the same. In the rare earth magnet precursor or the rare earth magnet molded body, recesses and protrusions are formed on the surface having the roughened structure, and the recesses and protrusions satisfy at least one of the following (a) to (c): (a) an arithmetic mean height (Sa) (ISO 25178) from 5 to 300 ?m, (b) a maximum height (Sz) (ISO 25178) from 50 to 1500 ?m, and (c) a developed interfacial area ratio (Sdr) (ISO 25178) from 0.3 to 12.Type: ApplicationFiled: December 24, 2019Publication date: March 17, 2022Inventors: Kiyoshi SHIMIZU, Masahiko ITAKURA, Norihisa WADA, Takayuki UNO
-
Patent number: 11167376Abstract: A method for roughening a surface of a metal molded body which can be used as an intermediate for manufacturing a composite molded body of a metal molded body with a resin, a rubber, a metal, or the like is provided. The method for roughening a metal molded body surface includes a step of irradiating the surface of the metal molded body with laser light at an irradiation rate of 2000 mm/sec or more with an energy density of 1 MW/cm2 or more using a laser apparatus, and the laser light irradiation step is a step of irradiating laser light so that laser light-irradiated portions and non-laser light-irradiated portions are generated alternately when the laser light is irradiated to be in a straight line, a curved line, or a combination of a straight line and a curved line on the surface of the metal molded body to be roughened.Type: GrantFiled: August 31, 2017Date of Patent: November 9, 2021Assignee: DAICEL POLYMER LTD.Inventors: Masahiko Itakura, Masahiro Katayama, Takayuki Uno
-
Patent number: 11142613Abstract: Polyamide particles including polyamide and having a water absorption rate of 0.5 to 2.5 wt. % are prepared to improve toughness of a cured product of a curable resin. The polyamide may be a semicrystalline polyamide. The polyamide has a glass transition temperature of approximately 100 to 150° C. The polyamide may have an alicyclic structure. The polyamide particles of this invention have an average particle size of approximately 5 to 40 ?m and a specific surface area determined by the BET method of approximately 0.08 to 12 m2/g. The polyamide particles of the present invention may also be spherical and have an average particle size of approximately 15 to 25 ?m. Furthermore, the polyamide particles of the present invention may have an exothermic peak in a temperature range between the glass transition temperature and a melting point of the polyamide upon heating the polyamide particles at a rate of 10° C./min by differential scanning calorimetry (DSC).Type: GrantFiled: April 10, 2017Date of Patent: October 12, 2021Assignee: DAICEL-EVONIK LTD.Inventors: Mitsuteru Mutsuda, Yoshiki Nakaie, Takayuki Uno
-
Publication number: 20210145553Abstract: Object Provided is a medical implant having favorable biocompatibility. Solution to Problem An implant used for binding to a biological tissue including bone or teeth, and made of metal selected from titanium or titanium alloys, cobalt chrome alloys, and tantalum, includes a surface layer portion of a portion, which is bound to a biological tissue including bone or teeth, of the implant, the surface layer portion having a porous structure. The porous structure includes a trunk hole formed in a thickness direction and including an opening on a binding face side, open holes each constituted of a branch hole formed extending from an inner wall surface of the trunk hole in a direction different from that of the trunk hole, an interior space formed in the thickness direction and not including an opening on the binding face side, a tunnel connecting path connecting the open holes and the interior space, and a tunnel connecting path connecting the open holes.Type: ApplicationFiled: July 9, 2018Publication date: May 20, 2021Applicant: DAICEL POLYMER LTD.Inventors: Masahiko ITAKURA, Kiyoshi SHIMIZU, Takayuki UNO, Masahiro KATAYAMA
-
Publication number: 20200070284Abstract: A sealing method for sealing an opening of a metallic molded body with a resin molded body, the metallic molded body having a cavity therein and an opening connected to the cavity, includes a step of irradiating laser light onto a joining surface on a periphery of the opening of the metallic molded body in an energy density of 1 MW/cm2 or more and at an irradiation rate of 2000 mm/sec or more to roughen the surface, and a step of placing, in a mold, a portion including the joining surface of the metallic molded body roughened in the preceding step and sealing the opening with a resin molded body formed by injection molding or compression molding of a resin.Type: ApplicationFiled: December 11, 2017Publication date: March 5, 2020Inventors: Masahiko ITAKURA, Masahiro KATAYAMA, Takayuki UNO
-
Publication number: 20200031067Abstract: The present invention provides a medical apparatus with an IC tag and a method for manufacturing the same. Provided are a method for manufacturing a medical apparatus and a medical apparatus manufactured by the same, the method including: irradiating a portion of a surface of a medical apparatus made of a metal with a laser beam to roughen the surface and form a roughened section; depositing a synthetic resin in a molten state or a solution state to the portion of the medical apparatus including the roughened section to form a base section of synthetic resin; placing an IC tag on the base section; and depositing a synthetic resin in a molten state or a solution state onto the base section and the IC tag to form a covering section of the synthetic resin that covers the base section of the synthetic resin and the IC tag, thereby encapsulating the IC tag inside a synthetic resin part including the base section and the covering section.Type: ApplicationFiled: March 28, 2018Publication date: January 30, 2020Inventors: Masahiko ITAKURA, Masahiro KATAYAMA, Takayuki UNO
-
Publication number: 20190299335Abstract: A method for manufacturing a composite molded body in which a metallic molded body and a resin molded body are joined, includes a step of irradiating laser light onto a joining surface of the metallic molded body with the resin molded body in an energy density of 1 MW/cm2 or more and at an irradiation rate of 2000 mm/sec or more to roughen the surface, and a step of placing, in a mold, a portion of the metallic molded body containing the joining surface roughened in the preceding step and injection-molding a resin to obtain a composite molded body. The roughened joining surface of the metallic molded body has a porous structure containing a hole having a maximum depth from a surface exceeding 500 ?m, and a joining strength between the metallic molded body and the resin molded body is 60 MPa or more.Type: ApplicationFiled: December 11, 2017Publication date: October 3, 2019Inventors: Masahiko ITAKURA, Masahiro KATAYAMA, Takayuki UNO
-
Patent number: 10370509Abstract: (A) A reinforcing fiber, (B) a resin particle, and (C) a matrix resin are combined to prepare a resin composition which improves a reinforcing effect by the reinforcing fiber. The reinforcing fiber (A) contains a carbon fiber. The resin particle (B) contains a semicrystalline thermoplastic resin, the semicrystalline thermoplastic resin in the resin particle (B) has an exothermic peak in a temperature range between a glass transition temperature of the semicrystalline thermoplastic resin and a melting point of the semicrystalline thermoplastic resin, the peak being determined by heating the resin particle (B) at a rate of 10° C./min. by differential scanning calorimetry (DSC), and the resin particle (B) has an average particle size of 3 to 40 ?m. The semicrystalline thermoplastic resin may be a polyamide resin having a melting point of not lower than 150° C. (particularly, a polyamide resin having an alicyclic structure and a glass transition temperature of not lower than 100° C.Type: GrantFiled: October 5, 2016Date of Patent: August 6, 2019Assignee: DAICEL-EVONIK LTD.Inventors: Mitsuteru Mutsuda, Yoshiki Nakaie, Takayuki Uno
-
Publication number: 20190176268Abstract: A method for roughening a surface of a metal molded body which can be used as an intermediate for manufacturing a composite molded body of a metal molded body with a resin, a rubber, a metal, or the like is provided. The method for roughening a metal molded body surface includes a step of irradiating the surface of the metal molded body with laser light at an irradiation rate of 2000 mm/sec or more with an energy density of 1 MW/cm2 or more using a laser apparatus, and the laser light irradiation step is a step of irradiating laser light so that laser light-irradiated portions and non-laser light-irradiated portions are generated alternately when the laser light is irradiated to be in a straight line, a curved line, or a combination of a straight line and a curved line on the surface of the metal molded body to be roughened.Type: ApplicationFiled: August 31, 2017Publication date: June 13, 2019Inventors: Masahiko ITAKURA, Masahiro KATAYAMA, Takayuki UNO
-
Publication number: 20190161587Abstract: Polyamide particles including polyamide and having a water absorption rate of 0.5 to 2.5 wt. % are prepared to improve toughness of a cured product of a curable resin. The polyamide may be a semicrystalline polyamide. The polyamide has a glass transition temperature of approximately 100 to 150° C. The polyamide may have an alicyclic structure. The polyamide particles of this invention have an average particle size of approximately 5 to 40 ?m and a specific surface area determined by the BET method of approximately 0.08 to 12 m2/g. The polyamide particles of the present invention may also be spherical and have an average particle size of approximately 15 to 25 ?m. Furthermore, the polyamide particles of the present invention may have an exothermic peak in a temperature range between the glass transition temperature and a melting point of the polyamide upon heating the polyamide particles at a rate of 10° C./min by differential scanning calorimetry (DSC).Type: ApplicationFiled: April 10, 2017Publication date: May 30, 2019Applicant: DAICEL-EVONIK LTD.Inventors: Mitsuteru MUTSUDA, Yoshiki NAKAIE, Takayuki UNO
-
Publication number: 20190048153Abstract: (A) A reinforcing fiber, (B) a resin particle, and (C) a matrix resin are combined to prepare a resin composition which improves a reinforcing effect by the reinforcing fiber. The reinforcing fiber (A) contains a carbon fiber. The resin particle (B) contains a semicrystalline thermoplastic resin, the semicrystalline thermoplastic resin in the resin particle (B) has an exothermic peak in a temperature range between a glass transition temperature of the semicrystalline thermoplastic resin and a melting point of the semicrystalline thermoplastic resin, the peak being determined by heating the resin particle (B) at a rate of 10° C./min. by differential scanning calorimetry (DSC), and the resin particle (B) has an average particle size of 3 to 40 ?m. The semicrystalline thermoplastic resin may be a polyamide resin having a melting point of not lower than 150° C. (particularly, a polyamide resin having an alicyclic structure and a glass transition temperature of not lower than 100° C.Type: ApplicationFiled: September 27, 2018Publication date: February 14, 2019Applicant: DAICEL-EVONIK LTD.Inventors: Mitsuteru MUTSUDA, Yoshiki NAKAIE, Takayuki UNO
-
Publication number: 20180258240Abstract: (A) A reinforcing fiber, (B) a resin particle, and (C) a matrix resin are combined to prepare a resin composition which improves a reinforcing effect by the reinforcing fiber. The reinforcing fiber (A) contains a carbon fiber. The resin particle (B) contains a semicrystalline thermoplastic resin, the semicrystalline thermoplastic resin in the resin particle (B) has an exothermic peak in a temperature range between a glass transition temperature of the semicrystalline thermoplastic resin and a melting point of the semicrystalline thermoplastic resin, the peak being determined by heating the resin particle (B) at a rate of 10° C./min. by differential scanning calorimetry (DSC), and the resin particle (B) has an average particle size of 3 to 40 ?m. The semicrystalline thermoplastic resin may be a polyamide resin having a melting point of not lower than 150° C. (particularly, a polyamide resin having an alicyclic structure and a glass transition temperature of not lower than 100° C.Type: ApplicationFiled: October 5, 2016Publication date: September 13, 2018Applicant: DAICEL-EVONIK LTD.Inventors: Mitsuteru MUTSUDA, Yoshiki NAKAIE, Takayuki UNO