Patents by Inventor Takayuki Yoshida

Takayuki Yoshida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9853415
    Abstract: A semiconductor laser device of the present disclosure includes a cooling plate, an insulating sheet, a first cooling block, and a first semiconductor laser element. The conductive cooling plate includes a water supply passage and a drain passage. The insulating sheet is provided to the cooling plate, and includes a first through hole connected to the water supply passage and a second through hole connected to the drain passage. A first cooling block is provided to the insulating sheet, includes therein a first tube connected to the first through hole and the second through hole, and is electrically conductive. The first semiconductor laser element is provided to the first cooling block. The first semiconductor laser element includes a first electrode, and a second electrode opposite to the first electrode. The first electrode is electrically connected to the first cooling block, and the cooling plate is at a floating potential.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: December 26, 2017
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takayuki Yoshida, Jing-Bo Wang
  • Publication number: 20170321000
    Abstract: A resin composition having an adhesive property in a high temperature range that is estimated during soldering, and flux using this resin composition, a flux residue of which is washable. The resin composition contains a hydroxyl carboxylic acid having two or more carboxyl groups and a hydroxyl group in its molecule and a thermosetting resin in a ratio of 1:3 or more and 1:7 or less. Further, the flux contains the hydroxyl carboxylic acid having two or more carboxyl groups and a hydroxyl group in its molecule in an amount of 8.5% by mass or more and 16% by mass or less, and a thermosetting resin in an amount of 50% by mass or more and 60% by mass or less, wherein a ratio between the hydroxyl carboxylic acid and the thermosetting resin is 1:7 or less.
    Type: Application
    Filed: October 14, 2015
    Publication date: November 9, 2017
    Inventors: Daisuke Maruko, Atsumi Takahashi, Takayuki Yoshida
  • Publication number: 20170301604
    Abstract: A semiconductor device according to the present disclosure includes an electrically conductive first electrode block, an electrically conductive submount, an insulating layer, a semiconductor element, an electrically conductive bump, and an electrically conductive second electrode block. The submount is provided in a first region of the upper surface of the first electrode block, and electrically connected to the first electrode block. The semiconductor element is provided on the submount, and has a first electrode electrically connected to the submount. The bump is provided on the upper surface of a second electrode, opposite the first electrode, of the semiconductor element, and electrically connected to the second electrode. A third region of the lower surface of the second electrode block is electrically connected to the bump via an electrically conductive metal layer. An electrically conductive metal sheet is provided between the metal layer and the bump.
    Type: Application
    Filed: August 5, 2015
    Publication date: October 19, 2017
    Inventors: Naoto UEDA, Kouij OOMORI, Takayuki YOSHIDA, Takuma MOTOFUJI
  • Publication number: 20170288365
    Abstract: A laser module according to the present disclosure includes a laser diode, a first collimating lens, and a beam twister. The laser diode includes a plurality of emitters and emits laser light from each of the plurality of emitters through a light emission surface. The first collimating lens is provided at a first distance from the light emission surface of the laser diode and parallelizes a fast-axis-wise divergence of the laser light. The beam twister is provided at a second distance away from the first collimating lens and turns the laser light approximately 90 degrees. Each of the plurality of emitters has a width of 5 ?m to 120 ?m on the light emission surface. The plurality of emitters have a pitch of 295 ?m to 305 ?m on the light emission surface.
    Type: Application
    Filed: August 5, 2015
    Publication date: October 5, 2017
    Inventors: TAKUMA MOTOFUJI, TAKAYUKI YOSHIDA, NAOTO UEDA, KOUJI OOMORI
  • Patent number: 9679670
    Abstract: There is provided an aggregate of radioactive material removing particles in which two or more radioactive material removing particles having magnetic particles and a radioactive material adsorption component are assembled, wherein a pore volume in the aggregate is 0.5 mL/g or more and 5.0 mL/g or less, and the pore volume means a cumulative value obtained by a mercury press-in method.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: June 13, 2017
    Assignees: THE JIKEI UNIVERSITY, DOWA HOLDINGS CO., LTD.
    Inventors: Yoshihisa Namiki, Toshihiko Ueyama, Takayuki Yoshida
  • Publication number: 20170149205
    Abstract: A semiconductor laser device of the present disclosure includes a cooling plate, an insulating sheet, a first cooling block, and a first semiconductor laser element. The conductive cooling plate includes a water supply passage and a drain passage. The insulating sheet is provided to the cooling plate, and includes a first through hole connected to the water supply passage and a second through hole connected to the drain passage. A first cooling block is provided to the insulating sheet, includes therein a first tube connected to the first through hole and the second through hole, and is electrically conductive. The first semiconductor laser element is provided to the first cooling block. The first semiconductor laser element includes a first electrode, and a second electrode opposite to the first electrode. The first electrode is electrically connected to the first cooling block, and the cooling plate is at a floating potential.
    Type: Application
    Filed: July 9, 2015
    Publication date: May 25, 2017
    Inventors: TAKAYUKI YOSHIDA, JING-BO WANG
  • Publication number: 20170137302
    Abstract: A magnetic ?-form iron oxide nanopowder is a novel magnetic iron oxide nanopowder having magnetic polarization and spontaneous electric polarization and having physical properties similar to those of half-metals; and a process produces the magnetic nanopowder. The magnetic powder has a composition represented by Fe2O3 and has a crystal structure belonging to the monoclinic system.
    Type: Application
    Filed: June 18, 2015
    Publication date: May 18, 2017
    Applicants: THE UNIVERSITY OF TOKYO, DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Shin-ichi OHKOSHI, Marie YOSHIKIYO, Asuka NAMAI, Hiroko TOKORO, Waka TARORA, Tomomichi NASU, Takayuki YOSHIDA, Manabu TANAKA
  • Publication number: 20170029418
    Abstract: The present invention relates to a pyrimidine compound or a pharmaceutically acceptable salt thereof represented by the following formula [I] wherein each symbol is as defined in the specification and a method of therapeutically or prophylactically treating an undesirable cell proliferation, comprising administering such a compound. The compound of the present invention has superior activity in suppressing undesirable cell proliferation, particularly, an antitumor activity, and is useful as an antitumor agent for the prophylaxis or treatment of cancer, rheumatism, and the like. In addition, the compound of the present invention can be a more effective antitumor agent when used in combination with other antitumor agents such as an alkylating agent or metabolism antagonist.
    Type: Application
    Filed: February 24, 2016
    Publication date: February 2, 2017
    Applicant: Japan Tobacco Inc.
    Inventors: Hisashi KAWASAKI, Hiroyuki ABE, Kazuhide HAYAKAWA, Tetsuya IIDA, Shinichi KIKUCHI, Takayuki YAMAGUCHI, Toyomichi NANAYAMA, Hironori KURACHI, Masahiro TAMARU, Yoshikazu HORI, Mitsuru TAKAHASHI, Takayuki YOSHIDA, Toshiyuki SAKAI
  • Publication number: 20160104560
    Abstract: There is provided an iron oxide magnetic nanoparticle powder having a ferromagnetic property even if the particles have an average particle size of 15 nm or less, preferably 10 nm or less, and a method of producing the same, an iron oxide magnetic nanoparticle thin film containing the iron oxide magnetic nanoparticle powder and a method of producing the same, wherein the iron oxide magnetic nanoparticles having an ?-Fe2O3 single phase, having the average particle size of 15 nm or less, and further 10 nm or less, are generated by using ?-FeO(OH) (iron oxide hydroxide) nanoparticles as a starting material, and coating the (iron oxide hydroxide) nanoparticles with silicon oxide, and applying heat treatment thereto under an atmospheric air, and further the iron oxide magnetic nanoparticle thin film is obtained by using the iron oxide magnetic nanoparticles.
    Type: Application
    Filed: April 24, 2014
    Publication date: April 14, 2016
    Inventors: Shin-ichi OHKOSHI, Marie YOSHIKIYO, Asuka NAMAI, Hiroko TOKORO, Waka TARORA, Takayuki YOSHIDA, Manabu TANAKA
  • Publication number: 20160001371
    Abstract: A soft magnetic metal powder is manufactured. An aqueous solution of at least one of aluminum, silicon, a rare-earth element (including Y), and magnesium is added into a solution containing an iron ion while blowing a gas containing oxygen thereinto, to form a precursor containing at least one of aluminum, silicon, a rare-earth element (including Y), and magnesium. The precursor is reduced to obtain a metal powder. The metal powder is further slowly oxidized with oxygen to form an oxidized film on the surface of the metal powder.
    Type: Application
    Filed: September 10, 2015
    Publication date: January 7, 2016
    Applicant: DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Kazumasa IKARI, Masahiro GOTOH, Takayuki YOSHIDA
  • Publication number: 20150239758
    Abstract: There is provided a method of producing a radioactive cesium decontaminator, including: suspending magnetic particles in a solvent, and coating each magnetic particle with organic monomer or polymer, to thereby form a precursor; adding a ferrocyanide aqueous solution and an aqueous solution containing at least one kind of transition metal into a suspension liquid containing the precursor after coating while applying a strong shear force, to thereby generate a radioactive cesium decontaminator; and removing water content from a slurry containing the obtained radioactive cesium decontaminator.
    Type: Application
    Filed: September 10, 2013
    Publication date: August 27, 2015
    Applicants: THE JIKEI UNIVERSITY, DOWA HOLDING CO., LTD.
    Inventors: Yoshihisa Namiki, Toshihiko Ueyama, Takayuki Yoshida, Ryoei Watanabe
  • Publication number: 20150183812
    Abstract: The present invention relates to a pyrimidine compound or a pharmaceutically acceptable salt thereof represented by the following formula [I] wherein each symbol is as defined in the specification and a method of therapeutically or prophylactically treating an undesirable cell proliferation, comprising administering such a compound. The compound of the present invention has superior activity in suppressing undesirable cell proliferation, particularly, an antitumor activity, and is useful as an antitumor agent for the prophylaxis or treatment of cancer, rheumatism, and the like. In addition, the compound of the present invention can be a more effective antitumor agent when used in combination with other antitumor agents such as an alkylating agent or metabolism antagonist.
    Type: Application
    Filed: August 7, 2014
    Publication date: July 2, 2015
    Inventors: Hisashi KAWASAKI, Hiroyuki ABE, Kazuhide HAYAKAWA, Tetsuya IIDA, Shinichi KIKUCHI, Takayuki YAMAGUCHI, Toyomichi NANAYAMA, Hironori KURACHI, Masahiro TAMARU, Yoshikazu HORI, Mitsuru TAKAHASHI, Takayuki YOSHIDA, Toshiyuki SAKAI
  • Patent number: 9050249
    Abstract: The present invention relates to an oral pharmaceutical composition in particle form, which comprises particles that contain a drug at the core of the pharmaceutical composition in particle form; a middle layer that contains two types of water-soluble components, an insolubilizer and an insolubilizing substance; and an outer layer for controlling water penetration that contains a water-insoluble substance. The present invention makes it possible to provide a pharmaceutical composition in particle form for oral use with which initial drug release is suppressed, the drug is quickly released thereafter, and lag time can be controlled as needed, and fast-disintegrating tablets containing this composition.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: June 9, 2015
    Assignee: ASTELLAS PHARMA INC.
    Inventors: Takayuki Yoshida, Hiroaki Tasaki, Masataka Katsuma, Atsushi Maeda
  • Publication number: 20150108392
    Abstract: In magnetic parts such as inductors and antennas using magnetic metal powder, the complex component of a magnetic permeability, which represents a loss in a GHz band, has been high. A magnetic part formed from a soft magnetic metal powder including iron as a main component can reduce a loss factor in a kHz to GHz band. The soft magnetic metal powder has an average particle diameter of 100 nm or less, an axial ratio (=major axis length/minor axis length) of 1.5 or more, a coercive force (Hc) of 39.8 to 198.9 kA/m (500 to 2500 Oe), and a saturation magnetization of 100 Am2/kg or more.
    Type: Application
    Filed: May 7, 2013
    Publication date: April 23, 2015
    Applicant: DOWA Electronics Material Co., Ltd.
    Inventors: Masahiro Gotoh, Takayuki Yoshida, Kazumasa Ikari
  • Publication number: 20150104664
    Abstract: In a magnetic component, such as an inductor and an antenna, produced with a metal magnetic powder, a complex number component of magnetic permeability that is a loss in the GHz band was high. A magnetic component obtained by molding a soft magnetic metal powder can have a reduced loss factor in the GHz band. The soft magnetic metal powder is characterized by containing iron as a main ingredient, and having an average particle size of not larger than 300 nm, a coercive force (Hc) of 16 to 119 kA/m (200 to 1500 Oe), a saturation magnetization of not less than 90 Am2/kg, and a volume resistivity of not less than 1.0×101 ?·cm. The volume resistivity is determined by measuring, by a four probe method, a molded body formed by vertically pressurizing 1.0 g of the metal powder at 64 MPa (20 kN).
    Type: Application
    Filed: March 13, 2013
    Publication date: April 16, 2015
    Inventors: Kazumasa Ikari, Masahiro Gotoh, Takayuki Yoshida
  • Patent number: 8932668
    Abstract: A metallic magnetic powder where a primary particle of each metallic magnetic particle is a powder without forming an aggregate, and a method of making the same that includes manufacturing a metallic magnetic powder constituted of metallic magnetic particles, containing a metallic magnetic phase, with Fe, or Fe and Co as main components, rare earth elements, or yttrium and one or more non-magnetic components removing the non-magnetic component from the metallic magnetic with a reducing agent, while making a complexing agent exist for forming a complex with the non-magnetic component in water; oxidizing the metallic magnetic particle with the non-magnetic component removed; substituting water adhered to the oxidized metallic magnetic particle with an organic solvent; and coating the surface of the metallic magnetic particle with an organic matter different from the organic solvent, while maintaining a wet condition of the metallic magnetic particle with the organic solvent adhered thereto.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: January 13, 2015
    Assignees: The Arizona Board of Regents on Behalf of The University of Arizona, Materials Co., Ltd.
    Inventors: Dong Chul Pyun, Heemin Yoo, Hirohisa Omoto, Takayuki Yoshida
  • Publication number: 20140356642
    Abstract: A metallic magnetic powder where a primary particle of each metallic magnetic particle is a powder without forming an aggregate, and a method of making the same that includes manufacturing a metallic magnetic powder constituted of metallic magnetic particles, containing a metallic magnetic phase, with Fe, or Fe and Co as main components, rare earth elements or yttrium and one or more non-magnetic components removing the non-magnetic component from the metallic magnetic with a reducing agent, while making a complexing agent exist for forming a complex with the non-magnetic component in water; oxidizing the metallic magnetic particle with the non-magnetic component removed; substituting water adhered to the oxidized metallic magnetic particle with an organic solvent; and coating the surface of the metallic magnetic particle with an organic matter different from the organic solvent, while maintaining a wet condition of the metallic magnetic particle with the organic solvent adhered thereto.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 4, 2014
    Applicants: THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA, DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Dong Chul PYUN, Heemin YOO, Hirohisa OMOTO, Takayuki YOSHIDA
  • Publication number: 20140346115
    Abstract: There is provided an aggregate of radioactive material removing particles in which two or more radioactive material removing particles having magnetic particles and a radioactive material adsorption component are assembled, wherein a pore volume in the aggregate is 0.5 mL/g or more and 5.0 mL/g or less, and the pore volume means a cumulative value obtained by a mercury press-in method.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 27, 2014
    Inventors: Yoshihisa NAMIKI, Toshihiko UEYAMA, Takayuki YOSHIDA
  • Patent number: 8897328
    Abstract: The semiconductor laser device of the present invention has a conductive first heatsink member, a conductive first adhesive, and a semiconductor laser element. The first adhesive is disposed on the first heatsink member, and the semiconductor laser element is disposed on the first adhesive. The first adhesive reaches an upper part of the side surface of the first heatsink member under the laser emission surface for laser emission of the semiconductor laser element. The structure further improves heat dissipation of the semiconductor laser element; at the same time, it is effective in obtaining laser light from the semiconductor laser element.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: November 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Takayuki Yoshida, Naoto Ueda, Kouji Oomori, Takuma Motofuji, Teruaki Kasai
  • Publication number: 20140339029
    Abstract: Magnetic functional fluid includes dispersion medium; and dispersed particles which are dispersed in the dispersion medium, wherein the dispersed particles includes: first ferromagnetic particles having an average particle diameter of 0.5 ?m to 50 ?m; and second ferromagnetic particles each having a needle-like shape, each having a smaller particle size than the first ferromagnetic particles, and each having a length ratio of a long axis to a short axis of 2 or more.
    Type: Application
    Filed: May 14, 2014
    Publication date: November 20, 2014
    Applicants: DOWA ELECTRONICS MATERIALS CO., LTD., NAGOYA INSTITUTE OF TECHNOLOGY
    Inventors: Yasushi IDO, Koichi HAYASHI, Takayuki YOSHIDA