Patents by Inventor Takeaki Isobe

Takeaki Isobe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8486578
    Abstract: An electrolyte membrane/electrode structure constituting a fuel cell comprises a solid polymer electrolyte membrane, an anode side electrode and a cathode side electrode sandwiching the solid polymer electrolyte membrane. The anode side electrode is provided with an electrode catalyst layer and a gas diffusion layer abutting on one side of the solid polymer electrolyte membrane and exposing the outer circumference thereof in the shape of a frame, and the cathode side electrode is provided with an electrode catalyst layer and a gas diffusion layer abutting on the other side of the solid polymer electrolyte membrane. A reinforcing sheet member is arranged on the frame-shaped surface of the solid polymer electrolyte membrane projecting from the outer circumference of the gas diffusion layer.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: July 16, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kentaro Ishida, Takeaki Isobe, Masaaki Nanaumi, Takeshi Matsubara
  • Publication number: 20110136038
    Abstract: An electrolyte membrane/electrode structure constituting a fuel cell comprises a solid polymer electrolyte membrane, an anode side electrode and a cathode side electrode sandwiching the solid polymer electrolyte membrane. The anode side electrode is provided with an electrode catalyst layer and a gas diffusion layer abutting on one side of the solid polymer electrolyte membrane and exposing the outer circumference thereof in the shape of a frame, and the cathode side electrode is provided with an electrode catalyst layer and a gas diffusion layer abutting on the other side of the solid polymer electrolyte membrane. A reinforcing sheet member is arranged on the frame-shaped surface of the solid polymer electrolyte membrane projecting from the outer circumference of the gas diffusion layer.
    Type: Application
    Filed: July 22, 2009
    Publication date: June 9, 2011
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Kentaro Ishida, Takeaki Isobe, Masaaki Nanaumi, Takeshi Matsubara
  • Patent number: 7037483
    Abstract: To produce high-pressure hydrogen, water and a hydrogen-generating material (MgH2) which reacts with water to generate hydrogen are weighed so that a target high hydrogen pressure is generated in a high-pressure container. Then, the hydrogen-generating material is introduced into the high-pressure container through its supply port, and water is introduced into the high-pressure container through the supply port. Thereafter, the supply port is closed, thereby causing a reaction between the hydrogen-generating material and the water, so that the hydrogen pressure in the high-pressure container reaches a target high hydrogen pressure.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: May 2, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Takanori Suzuki, Izuru Kanoya, Mitsuya Hosoe, Takeaki Isobe
  • Publication number: 20040018145
    Abstract: To produce high-pressure hydrogen, water and a hydrogen-generating material (MgH2) which reacts with water to generate hydrogen are weighed so that a target high hydrogen pressure is generated in a high-pressure container. Then, the hydrogen-generating material is introduced into the high-pressure container through its supply port, and water is introduced into the high-pressure container through the supply port. Thereafter, the supply port is closed, thereby causing a reaction between the hydrogen-generating material and the water, so that the hydrogen pressure in the high-pressure container reaches a target high hydrogen pressure.
    Type: Application
    Filed: April 22, 2003
    Publication date: January 29, 2004
    Inventors: Takanori Suzuki, Izuru Kanoya, Mitsuya Hosoe, Takeaki Isobe
  • Publication number: 20030173229
    Abstract: An Mg alloy powder is reacted with water to produce hydogen. The Mg alloy powder is produced by hydrogenating an aggregate of Mg alloy particles each having an Mg particle and a plurality of catalyst metal particulates existing on a surface of and within the Mg particle. The catalyst metal particulates are at least one selected from Ni particulates, Ni alloy particulates, Fe particulates, Fe alloy particulates, V particulates, V alloy particulates, Mn particulates, Mn alloy particulates, Ti particulates, Ti alloy particulates, Cu particulates, Cu alloy particulates, Ag particulates, Ag alloy particulates, Ca particulates, Ca alloy particulates, Zn particulates, Zn alloy particulates, Zr particulates, Zr alloy particulates, Co particulates, Co alloy particulates, Cr particulates and Cr alloy particulates. Thus, hydrogen can be produced quickly and in large amounts, and waste liquid is easily treated. Moreover, hydrogen production cost can be reduced using an inexpensive catalyst.
    Type: Application
    Filed: January 16, 2003
    Publication date: September 18, 2003
    Inventors: Izuru Kanoya, Mitsuya Hosoe, Takanori Suzuki, Takeaki Isobe