Patents by Inventor Takefumi Shimoyama

Takefumi Shimoyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12188555
    Abstract: The present invention provides a shift control method include: setting a basic target synchronization rotation speed that is a basic target value of the input shaft rotation speed during the shift; determining whether or not an accelerating intention is present when the shift is a downshift with a driving force requirement to the vehicle; when the accelerating intention is present, setting a first target input shaft rotation speed as the target input shaft rotation speed, the first target input shaft rotation speed being obtained by increasingly correcting the basic target synchronization rotation speed; and when the accelerating intention is not present, setting a second target input shaft rotation speed as the target input shaft rotation speed, the second target input shaft rotation speed being obtained by maintaining or decreasingly correcting the basic target synchronization rotation speed.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: January 7, 2025
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Hiroki Shimoyama, Munetoshi Ueno, Takefumi Suzuki
  • Patent number: 9617563
    Abstract: To provide a series of techniques for obtaining ?-phellandrene with high purity and in a large quantity. Provided is a recombinant cell capable of producing ?-phellandrene, prepared by introducing at least one nucleic acid selected from the group consisting of a nucleic acid encoding geranyl pyrophosphate (GPP) synthase and a nucleic acid encoding neryl pyrophosphate (NPP) synthase, and a nucleic acid encoding ?-phellandrene synthase into a host cell in such a manner that these nucleic acids are expressed in the host cell. Also provided is a method for producing ?-phellandrene by culturing the recombinant cell to produce ?-phellandrene in the recombinant cell.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: April 11, 2017
    Assignees: TOHOKU UNIVERSITY, SEKISUI CHEMICAL CO., LTD.
    Inventors: Masahiro Furutani, Akihiro Uenishi, Koichiro Iwasa, Yasuyuki Kori, Seiji Takahashi, Takefumi Shimoyama
  • Publication number: 20150218589
    Abstract: To provide a series of techniques for obtaining ?-phellandrene with high purity and in a large quantity. Provided is a recombinant cell capable of producing ?-phellandrene, prepared by introducing at least one nucleic acid selected from the group consisting of a nucleic acid encoding geranyl pyrophosphate (GPP) synthase and a nucleic acid encoding neryl pyrophosphate (NPP) synthase, and a nucleic acid encoding ?-phellandrene synthase into a host cell in such a manner that these nucleic acids are expressed in the host cell. Also provided is a method for producing ?-phellandrene by culturing the recombinant cell to produce ?-phellandrene in the recombinant cell.
    Type: Application
    Filed: September 19, 2013
    Publication date: August 6, 2015
    Inventors: Masahiro Furutani, Akihiro Uenishi, Koichiro Iwasa, Yasuyuki Kori, Seiji Takahashi, Takefumi Shimoyama
  • Patent number: 8426045
    Abstract: One object is to provide a measuring device configured to evaluate the power generation characteristics of a response-delay type fuel cell automatically, precisely, and with excellent reproducibility with consideration of the response delay against power load fluctuations, and effectively acclimatize and develop microorganisms that are provided to generate power. A potentio-galvanostat is connected to a microbial fuel cell provided as an exemplary response-delay type fuel cell. Further, an automatic measuring device is connected to the potentio-galvanostat. The automatic measuring device has a program function and measures the internal resistance of the microbial fuel cell at set time.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: April 23, 2013
    Assignee: Kajima Corporation
    Inventors: Akira Yamazawa, Yoshiyuki Ueno, Kazuya Watanabe, Takefumi Shimoyama
  • Publication number: 20120003504
    Abstract: [PROBLEMS] To provide a microbial fuel cell whose parts can be replaced without lowering the energy recovery efficiency and a membrane cassette for microbial fuel cells. [MEANS FOR SOLVING PROBLEMS] A negative electrode (10) supporting anaerobic microorganisms (11) is immersed in an organic substrate (S). A positive electrode (15) sealed together with an electrolyte (D) in a closed hollow cassette (20) having an outer shell (25) at least a part of which is formed of an ion-permeable membrane (21), an inlet (22), and an outlet (23) or connected to the inner side of an ion-permeable membrane (21) is inserted into the organic substrate (S). While oxygen (O) is supplied into the cassette (20) through the inlet (22) and the outlet (23), electricity is taken out through a circuit (18) electrically interconnecting the negative and positive electrodes (10, 15).
    Type: Application
    Filed: October 15, 2008
    Publication date: January 5, 2012
    Inventors: Akira Yamazawa, Yoshiyuki Ueno, Masahiro Tatara, Yoji Kitajima, Kazuya Watanabe, Takefumi Shimoyama, Toshikazu Ishii, Shoko Komukai
  • Publication number: 20110020671
    Abstract: One object is to provide a measuring device configured to evaluate the power generation characteristics of a response-delay type fuel cell automatically, precisely, and with excellent reproducibility with consideration of the response delay against power load fluctuations, and effectively acclimatize and develop microorganisms that are provided to generate power. A potentio-galvanostat is connected to a microbial fuel cell provided as an exemplary response-delay type fuel cell. Further, an automatic measuring device is connected to the potentio-galvanostat. The automatic measuring device has a program function and measures the internal resistance of the microbial fuel cell at set time.
    Type: Application
    Filed: October 29, 2008
    Publication date: January 27, 2011
    Applicant: KAJIMA CORPORATION
    Inventors: Akira Yamazawa, Yoshiyuki Ueno, Kazuya Watanabe, Takefumi Shimoyama