Patents by Inventor Takeharu Asaoka

Takeharu Asaoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7347062
    Abstract: An ejector cycle with an ejector includes a nozzle for decompressing refrigerant. A receiver for storing refrigerant is disposed at a refrigerant outlet side of a condenser. A bypass passage and a switching valve for opening and closing the bypass passage are provided so that high-temperature refrigerant discharged from a compressor is introduced into an evaporator while bypassing the condenser in a defrosting operation. When the defrosting operation is set, the switching valve is opened while a fan for blowing cool air to the condenser is operated. A part of refrigerant discharged from the compressor flows into the evaporator to remove frost on a surface of the evaporator.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: March 25, 2008
    Assignee: DENSO Corporation
    Inventors: Haruyuki Nishijima, Hirotsugu Takeuchi, Toru Ikemoto, Hisatsugu Matsunaga, Takeharu Asaoka
  • Patent number: 6925835
    Abstract: In an ejector cycle with an ejector including a nozzle for decompressing refrigerant, a refrigerant outlet is provided in an evaporator at a position upper than a refrigerant inlet. Therefore, a circulation performance of refrigerant flowing in the evaporator can be improved. Accordingly, even when a pumping capacity generated in the ejector becomes smaller, a sufficient amount of refrigerant can be drawn into the ejector from the evaporator. Thus, a refrigerant amount supplied to the evaporator can be effectively increased. Further, a control unit controls an amount of cooling air supplied to a condenser based on the temperature of the cooling air, to control a refrigerant state to be introduced to the nozzle. In this case, a pressure increasing amount in the ejector can be effectively increased, and consumption power in the compressor can be effectively increased.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: August 9, 2005
    Assignee: Denso Corporation
    Inventors: Haruyuki Nishijima, Hisatsugu Matsunaga, Tooru Ikemoto, Hirotsugu Takeuchi, Takeharu Asaoka
  • Patent number: 6918266
    Abstract: In an ejector, a nozzle is provided within a housing to defining a passage portion around the nozzle, and a suction port is provided in the housing to draw a refrigerant by entrainment of a driving refrigerant jetted from the nozzle. Further, a wall portion is provided in the housing such that the refrigerant drawn from the suction port into the passage portion is prevented from flowing toward an inlet side of the nozzle from a position of the suction port in an axial direction of the nozzle. Therefore, all of the refrigerant flowing from the suction port flows toward an outlet side of the nozzle without flowing toward the inlet side of the nozzle from the position of the suction port in the axial direction. Thus, it can prevent a large pressure loss from being caused in the refrigerant sucked from the suction port, and ejector efficiency can be effectively increased.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: July 19, 2005
    Assignee: DENSO Corporation
    Inventors: Makoto Ikegami, Haruyuki Nishijima, Tooru Ikemoto, Yukio Ogawa, Hisatsugu Matsunaga, Takeharu Asaoka, Hirotsugu Takeuchi
  • Publication number: 20040255610
    Abstract: In an ejector cycle with an ejector including a nozzle for decompressing refrigerant, a receiver for storing refrigerant therein is disposed at a refrigerant outlet side of a condenser. Further, a bypass passage and a switching valve for opening and closing the bypass passage are provided so that high-temperature refrigerant discharged from a compressor is introduced into an evaporator while bypassing the condenser in a defrosting operation. When the defrosting operation is set, the switching valve is opened while a fan for blowing cool air to the condenser is operated. Accordingly, in the defrosting operation, at least a part of refrigerant discharged from the compressor flows into the evaporator to remove frost on a surface of the evaporator, and a surplus refrigerant is condensed in the condenser and is stored in the receiver. Accordingly, it can prevent condensation capacity of the condenser from being decreased.
    Type: Application
    Filed: June 15, 2004
    Publication date: December 23, 2004
    Inventors: Haruyuki Nishijima, Hirotsugu Takeuchi, Toru Ikemoto, Hisatsugu Matsunaga, Takeharu Asaoka
  • Publication number: 20040255612
    Abstract: In an ejector cycle with an ejector including a nozzle for decompressing refrigerant, a refrigerant outlet is provided in an evaporator at a position upper than a refrigerant inlet. Therefore, a circulation performance of refrigerant flowing in the evaporator can be improved. Accordingly, even when a pumping capacity generated in the ejector becomes smaller, a sufficient amount of refrigerant can be drawn into the ejector from the evaporator. Thus, a refrigerant amount supplied to the evaporator can be effectively increased. Further, a control unit controls an amount of cooling air supplied to a condenser based on the temperature of the cooling air, to control a refrigerant state to be introduced to the nozzle. In this case, a pressure increasing amount in the ejector can be effectively increased, and consumption power in the compressor can be effectively increased.
    Type: Application
    Filed: June 16, 2004
    Publication date: December 23, 2004
    Inventors: Haruyuki Nishijima, Hisatsugu Matsunaga, Tooru Ikemoto, Hirotsugu Takeuchi, Takeharu Asaoka
  • Publication number: 20040206111
    Abstract: In an ejector, a nozzle is provided within a housing to defining a passage portion around the nozzle, and a suction port is provided in the housing to draw a refrigerant by entrainment of a driving refrigerant jetted from the nozzle. Further, a wall portion is provided in the housing such that the refrigerant drawn from the suction port into the passage portion is prevented from flowing toward an inlet side of the nozzle from a position of the suction port in an axial direction of the nozzle. Therefore, all of the refrigerant flowing from the suction port flows toward an outlet side of the nozzle without flowing toward the inlet side of the nozzle from the position of the suction port in the axial direction. Thus, it can prevent a large pressure loss from being caused in the refrigerant sucked from the suction port, and ejector efficiency can be effectively increased.
    Type: Application
    Filed: April 16, 2004
    Publication date: October 21, 2004
    Inventors: Makoto Ikegami, Haruyuki Nishijima, Tooru Ikemoto, Yukio Ogawa, Hisatsugu Matsunaga, Takeharu Asaoka, Hirotsugu Takeuchi