Patents by Inventor Takeharu Kuramochi
Takeharu Kuramochi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8771902Abstract: A fuel cell is manufactured using a polymer electrolyte membrane (1). A catalyst layer (12) is formed at fixed intervals on the surface of the strip-form polymer electrolyte membrane (1) in the lengthwise direction thereof, and conveyance holes (10) are formed in series at fixed intervals on the two side portions thereof. By rotating a conveyance roller (32) comprising on its outer periphery projections which engage with the holes (10), the polymer electrolyte membrane (1) is fed from a reel (9). A GDL (6) and a separator (7) are adhered to the fed polymer electrolyte membrane (1) at a predetermined processing timing based on the rotation speed of the conveyance roller (32), and thus the fuel cell is manufactured efficiently while the GDL (6) and separator (7) are laminated onto the catalyst layer (12) accurately.Type: GrantFiled: May 26, 2011Date of Patent: July 8, 2014Assignee: Nissan Motor Co., Ltd.Inventors: Takeharu Kuramochi, Masanori Iwamoto, Masahiko Katsu, Kaoru Eguchi, Masahiro Omata, Hideto Kanafusa, Yoshiki Muto
-
Patent number: 8470498Abstract: A fuel cell is manufactured using a polymer electrolyte membrane (1). A catalyst layer (12) is formed at fixed intervals on the surface of the strip-form polymer electrolyte membrane (1) in the lengthwise direction thereof, and conveyance holes (10) are formed in series at fixed intervals on the two side portions thereof. By rotating a conveyance roller (32) comprising on its outer periphery projections which engage with the holes (10), the polymer electrolyte membrane (1) is fed from a reel (9). A GDL (6) and a separator (7) are adhered to the fed polymer electrolyte membrane (1) at a predetermined processing timing based on the rotation speed of the conveyance roller (32), and thus the fuel cell is manufactured efficiently while the GDL (6) and separator (7) are laminated onto the catalyst layer (12) accurately.Type: GrantFiled: May 26, 2011Date of Patent: June 25, 2013Assignee: Nissan Motor Co., Ltd.Inventors: Takeharu Kuramochi, Masanori Iwamoto, Masahiko Katsu, Kaoru Eguchi, Masahiro Omata, Hideto Kanafusa, Yoshiki Muto
-
Patent number: 8247137Abstract: Separators (5A, 5B, 6) and membrane-electrode assemblies (2) of a fuel cell stack (1) are alternately stacked in a guide box (40). The separators (5A, 5B, 6) each have groove-like gas paths (10A, 10B). Powder of an adhesive agent (7) is adhered in advance to the surfaces of the separators (5A, 5B, 6), except the gas paths (10A, 10B), through photosensitive drums (31A, 31B) to which the powder is adsorbed in a given pattern. The separators (5A, 5B, 6) and the membrane-electrode assemblies (2), stacked in the guide box (40), are heated and compressed by a press (43) and heaters (40C) to obtain a unitized fuel cell stack (1).Type: GrantFiled: June 10, 2011Date of Patent: August 21, 2012Assignee: Nissan Motor Co., Ltd.Inventors: Akira Fujiki, Yukihiro Maekawa, Takeharu Kuramochi, Masahiko Katsu, Takayuki Hirao, Takeshi Shimizu, Masanori Iwamoto, Sadao Miki, Haruhiko Suzuki, Yoshiki Muto, Kaoru Eguchi, Masahiro Omata, Hiroshi Saitou
-
Publication number: 20110236801Abstract: Separators (5A, 5B, 6) and membrane-electrode assemblies (2) of a fuel cell stack (1) are alternately stacked in a guide box (40). The separators (5A, 5B, 6) each have groove-like gas paths (10A, 10B). Powder of an adhesive agent (7) is adhered in advance to the surfaces of the separators (5A, 5B, 6), except the gas paths (10A, 10B), through photosensitive drums (31A, 31B) to which the powder is adsorbed in a given pattern. The separators (5A, 5B, 6) and the membrane-electrode assemblies (2), stacked in the guide box (40), are heated and compressed by a press (43) and heaters (40C) to obtain a unitized fuel cell stack (1).Type: ApplicationFiled: June 10, 2011Publication date: September 29, 2011Inventors: Akira Fujiki, Yukihiro Maekawa, Takeharu Kuramochi, Masahiko Katsu, Takayuki Hirao, Takeshi Shimizu, Masanori Iwamoto, Sadao Miki, Haruhiko Suzuki, Yoshiki Muto, Kaoru Eguchi, Masahiro Omata, Hiroshi Saitou
-
Publication number: 20110229802Abstract: A fuel cell is manufactured using a polymer electrolyte membrane (1). A catalyst layer (12) is formed at fixed intervals on the surface of the strip-form polymer electrolyte membrane (1) in the lengthwise direction thereof, and conveyance holes (10) are formed in series at fixed intervals on the two side portions thereof. By rotating a conveyance roller (32) comprising on its outer periphery projections which engage with the holes (10), the polymer electrolyte membrane (1) is fed from a reel (9). A GDL (6) and a separator (7) are adhered to the fed polymer electrolyte membrane (1) at a predetermined processing timing based on the rotation speed of the conveyance roller (32), and thus the fuel cell is manufactured efficiently while the GDL (6) and separator (7) are laminated onto the catalyst layer (12) accurately.Type: ApplicationFiled: May 26, 2011Publication date: September 22, 2011Inventors: Takeharu KURAMOCHI, Masanori Iwamoto, Masahiko Katsu, Kaoru Eguchi, Masahiro Omata, Hideto Kanafusa, Yoshiki Muto
-
Publication number: 20110229801Abstract: A fuel cell is manufactured using a polymer electrolyte membrane (1). A catalyst layer (12) is formed at fixed intervals on the surface of the strip-form polymer electrolyte membrane (1) in the lengthwise direction thereof, and conveyance holes (10) are formed in series at fixed intervals on the two side portions thereof. By rotating a conveyance roller (32) comprising on its outer periphery projections which engage with the holes (10), the polymer electrolyte membrane (1) is fed from a reel (9). A GDL (6) and a separator (7) are adhered to the fed polymer electrolyte membrane (1) at a predetermined processing timing based on the rotation speed of the conveyance roller (32), and thus the fuel cell is manufactured efficiently while the GDL (6) and separator (7) are laminated onto the catalyst layer (12) accurately.Type: ApplicationFiled: May 26, 2011Publication date: September 22, 2011Inventors: Takeharu KURAMOCHI, Masanori Iwamoto, Masahiko Katsu, Kaoru Eguchi, Masahiro Omata, Hideto Kanafusa, Yoshiki Muto
-
Patent number: 7993798Abstract: A fuel cell is manufactured using a polymer electrolyte membrane (1). A catalyst layer (12) is formed at fixed intervals on the surface of the strip-form polymer electrolyte membrane (1) in the lengthwise direction thereof, and conveyance holes (10) are formed in series at fixed intervals on the two side portions thereof. By rotating a conveyance roller (32) comprising on its outer periphery projections which engage with the holes (10), the polymer electrolyte membrane (1) is fed from a reel (9). A GDL (6) and a separator (7) are adhered to the fed polymer electrolyte membrane (1) at a predetermined processing timing based on the rotation speed of the conveyance roller (32), and thus the fuel cell is manufactured efficiently while the GDL (6) and separator (7) are laminated onto the catalyst layer (12) accurately.Type: GrantFiled: November 2, 2004Date of Patent: August 9, 2011Assignee: Nissan Motor Co., LtdInventors: Takeharu Kuramochi, Masanori Iwamoto, Masahiko Katsu, Kaoru Eguchi, Masahiro Omata, Hideto Kanafusa, Yoshiki Muto
-
Patent number: 7981572Abstract: Separators (5A, 5B, 6) and membrane-electrode assemblies (2) of a fuel cell stack (1) are alternately stacked in a guide box (40). The separators (5A, 5B, 6) each have groove-like gas paths (10A, 10B). Powder of an adhesive agent (7) is adhered in advance to the surfaces of the separators (5A, 5B, 6), except the gas paths (10A, 10B), through photosensitive drums (31A, 31B) to which the powder is adsorbed in a given pattern. The separators (5A, 5B, 6) and the membrane-electrode assemblies (2), stacked in the guide box (40), are heated and compressed by a press (43) and heaters (40C) to obtain a unitized fuel cell stack (1).Type: GrantFiled: October 28, 2004Date of Patent: July 19, 2011Assignee: Nissan Motor Co., Ltd.Inventors: Akira Fujiki, Yukihiro Maekawa, Takeharu Kuramochi, Masahiko Katsu, Takayuki Hirao, Takeshi Shimizu, Masanori Iwamoto, Sadao Miki, Haruhiko Suzuki, Yoshiki Muto, Kaoru Eguchi, Masahiro Omata, Hiroshi Saitou
-
Publication number: 20070271770Abstract: Separators (5A, 5B, 6) and membrane-electrode assemblies (2) of a fuel cell stack (1) are alternately stacked in a guide box (40). The separators (5A, 5B, 6) each have groove-like gas paths (10A, 10B). Powder of an adhesive agent (7) is adhered in advance to the surfaces of the separators (5A, 5B, 6), except the gas paths (10A, 10B), through photosensitive drums (31A, 31B) to which the powder is adsorbed in a given pattern. The separators (5A, 5B, 6) and the membrane-electrode assemblies (2), stacked in the guide box (40), are heated and compressed by a press (43) and heaters (40C) to obtain a unitized fuel cell stack (1).Type: ApplicationFiled: October 28, 2004Publication date: November 29, 2007Inventors: Akira Fujiki, Yukihiro Maekawa, Takeharu Kuramochi, Masahiko Katsu, Takayuki Hirao, Takeshi Shimizu, Masanori Iwamoto, Sadao Miki, Haruhiko Suzuki, Yoshiki Muto, Kaoru Eguchi, Masahiro Omata, Hiroshi Saitou
-
Publication number: 20070116999Abstract: A fuel cell is manufactured using a polymer electrolyte membrane (1). A catalyst layer (12) is formed at fixed intervals on the surface of the strip-form polymer electrolyte membrane (1) in the lengthwise direction thereof, and conveyance holes (10) are formed in series at fixed intervals on the two side portions thereof. By rotating a conveyance roller (32) comprising on its outer periphery projections which engage with the holes (10), the polymer electrolyte membrane (1) is fed from a reel (9). A GDL (6) and a separator (7) are adhered to the fed polymer electrolyte membrane (1) at a predetermined processing timing based on the rotation speed of the conveyance roller (32), and thus the fuel cell is manufactured efficiently while the GDL (6) and separator (7) are laminated onto the catalyst layer (12) accurately.Type: ApplicationFiled: November 2, 2004Publication date: May 24, 2007Inventors: Takeharu Kuramochi, Masanori Iwamoto, Masahiko Katsu, Kaoru Eguchi, Masahiro Omata, Hideto Kanafusa, Yoshiki Muto