Patents by Inventor TAKEHIKO ITAGAKI

TAKEHIKO ITAGAKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190099829
    Abstract: A method for spot-welding metallic materials includes: sandwiching the metallic materials with a pair of electrodes; a pre-heating step for pre-heating a region different from a given region which should be welded by applying electric power having a high frequency to the pair of electrodes; and a welding step for spot-welding a given region of the metallic materials by applying electric power for welding to the pair of electrodes. The heating time in the pre-heating step and that in the welding step are independently controlled.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 4, 2019
    Applicants: NETUREN CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Takahiko KANAI, Munehisa HATTA, Fumiaki IKUTA, Kazuhiro KAWASAKI, Eizaburo NAKANISHI, Tsuyoshi YOSHIDA, Kotobu NAGAI, Masao HAYAKAWA, Takehiko ITAGAKI
  • Patent number: 10189112
    Abstract: A welding equipment for metallic materials capable of performing heat treatment such as tempering based on partial heating in spot welding is provided. The welding equipment sandwiches metallic materials with a pair of electrodes, and heats different regions of the metallic materials by energization, with the pair of electrodes maintained at the same position with respect to the metallic materials. The welding equipment includes a first heating means connected to the pair of electrodes for heating and welding the internal region of the circle defined by projecting the cross-sectional area of the axis of the electrodes on the metallic materials by applying power having a low first frequency, a second heating means for heating a ring-shaped region along the circle by applying power having a second frequency that is higher than the first frequency, and an energization control unit for independently controlling the first and the second heating means.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: January 29, 2019
    Assignees: NETUREN CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Takahiko Kanai, Munehisa Hatta, Fumiaki Ikuta, Kazuhiro Kawasaki, Eizaburo Nakanishi, Tsuyoshi Yoshida, Kotobu Nagai, Masao Hayakawa, Takehiko Itagaki
  • Patent number: 9498840
    Abstract: A welding structural part 1 is manufactured by overlapping the surfaces of steel sheets 2, and forming a weld zone by spot welding. The weld zone 3 includes: a weld nugget 4; and a heat affected zone 5 surrounding the weld nugget 4, wherein the hardness in the weld zone increases along an exterior region 6 of the heat affected zone 5 toward the heat affected zone 5, and then decreases along the heat affected zone 5 toward the central region of the weld nugget 4. In the boundary region between the weld nugget 4 and the heat affected zone 5, the weld nugget 4 may have a convex portion 4A bulging into the heat affected zone 5 along the overlapped portion. The steel sheets 2 contain carbon in 0.15 mass % or more.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: November 22, 2016
    Assignees: NETUREN CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Takahiko Kanai, Munehisa Hatta, Fumiaki Ikuta, Kazuhiro Kawasaki, Eizaburou Nakanishi, Masayuki Miyake, Kotobu Nagai, Masao Hayakawa, Takehiko Itagaki
  • Publication number: 20150306696
    Abstract: A welding equipment for metallic materials capable of performing heat treatment such as tempering based on partial heating in spot welding is provided. The welding equipment sandwiches metallic materials with a pair of electrodes, and heats different regions of the metallic materials by energization, with the pair of electrodes maintained at the same position with respect to the metallic materials. The welding equipment includes a first heating means connected to the pair of electrodes for heating and welding the internal region of the circle defined by projecting the cross-sectional area of the axis of the electrodes on the metallic materials by applying power having a low first frequency, a second heating means for heating a ring-shaped region along the circle by applying power having a second frequency that is higher than the first frequency, and an energization control unit for independently controlling the first and the second heating means.
    Type: Application
    Filed: June 12, 2015
    Publication date: October 29, 2015
    Applicants: NATIONAL INSTITUTE FOR MATERIALS SCIENCE, NETUREN CO., LTD.
    Inventors: Takahiko KANAI, Munehisa HATTA, Fumiaki IKUTA, Kazuhiro KAWASAKI, Eizaburo NAKANISHI, Tsuyoshi YOSHIDA, Kotobu NAGAI, Masao HAYAKAWA, Takehiko ITAGAKI
  • Patent number: 9079266
    Abstract: A welding equipment for metallic materials capable of performing heat treatment such as tempering based on partial heating in spot welding is provided. The welding equipment 1 sandwiches metallic materials 9 with a pair of electrodes 4, 4, and heats different regions of the metallic materials 9 by energization, with the pair of electrodes 4, 4 maintained at the same position with respect to the metallic materials 9. The welding equipment includes a first heating means 6 connected to the pair of electrodes 4, 4 for heating and welding the internal region of the circle defined by projecting the cross-sectional area of the axis of the electrodes on the metallic materials by applying power having a low first frequency, a second heating means 8 for heating a ring-shaped region along the circle by applying power having a second frequency that is higher than the first frequency, and an energization control unit 10 for independently controlling the first and the second heating means 6, 8.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: July 14, 2015
    Assignees: NETUREN CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Takahiko Kanai, Munehisa Hatta, Fumiaki Ikuta, Kazuhiro Kawasaki, Eizaburo Nakanishi, Tsuyoshi Yoshida, Kotobu Nagai, Masao Hayakawa, Takehiko Itagaki
  • Publication number: 20120129006
    Abstract: A welding structural part 1 is manufactured by overlapping the surfaces of steel sheets 2, and forming a weld zone by spot welding. The weld zone 3 includes: a weld nugget 4; and a heat affected zone 5 surrounding the weld nugget 4, wherein the hardness in the weld zone increases along an exterior region 6 of the heat affected zone 5 toward the heat affected zone 5, and then decreases along the heat affected zone 5 toward the central region of the weld nugget 4. In the boundary region between the weld nugget 4 and the heat affected zone 5, the weld nugget 4 may have a convex portion 4A bulging into the heat affected zone 5 along the overlapped portion. The steel sheets 2 contain carbon in 0.15 mass % or more.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 24, 2012
    Applicants: NETUREN CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE, NISSAN MOTOR CO., LTD.
    Inventors: Takahiko Kanai, Munehisa Hatta, Fumiaki Ikuta, Kazuhiro Kawasaki, Eizaburou Nakanishi, Masayuki Miyake, Kotobu Nagai, Masao Hayakawa, Takehiko Itagaki
  • Publication number: 20110303655
    Abstract: A welding equipment for metallic materials capable of performing heat treatment such as tempering based on partial heating in spot welding is provided. The welding equipment 1 sandwiches metallic materials 9 with a pair of electrodes 4, 4, and heats different regions of the metallic materials 9 by energization, with the pair of electrodes 4, 4 maintained at the same position with respect to the metallic materials 9. The welding equipment includes a first heating means 6 connected to the pair of electrodes 4, 4 for heating and welding the internal region of the circle defined by projecting the cross-sectional area of the axis of the electrodes on the metallic materials by applying power having a low first frequency, a second heating means 8 for heating a ring-shaped region along the circle by applying power having a second frequency that is higher than the first frequency, and an energization control unit 10 for independently controlling the first and the second heating means 6, 8.
    Type: Application
    Filed: September 30, 2009
    Publication date: December 15, 2011
    Applicants: NATIONAL INSTITUTE FOR MATERIALS SCIENCE, NETUREN CO., LTD.
    Inventors: Takahiko Kanai, Munehisa Hatta, Fumiaki Ikuta, Kazuhiro Kawasaki, Eizaburo Nakanishi, Tsuyoshi Yoshida, Kotobu Nagai, Masao Hayakawa, Takehiko Itagaki
  • Publication number: 20060054253
    Abstract: The invention provides a ferritic heat-resistant steel having excellent high-temperature oxidation resistance, especially excellent steam oxidation-resistant characteristics. In high-Cr ferritic heat-resistant steel, ultra-fine oxide particles having a size of not larger than 1 ?m are formed just below the oxide films and formed on the steel base, whereby the adhesiveness between the films and the base is enhanced. The ferritic heat-resistant steel contains Cr in an amount of from 8.0 to 13.0% by weight, and at least one of Rh and Ir in a total amount of from 0.3 to 5.0% by weight.
    Type: Application
    Filed: October 17, 2005
    Publication date: March 16, 2006
    Inventors: Nobuyuki Fujitsuna, Fujio Abe, Takehiko Itagaki, Masaaki Igarashi, Seiichi Muneki, Kazuhiro Kimura, Hideaki Kushima
  • Publication number: 20040250923
    Abstract: A high Cr ferritic heat-resistant steel (Cr content of 15 mass % or less), which, at least a region 10 &mgr;m in depth as measured from the surface has a worked texture comprising elongated ferritic grains or a fine crystal grain texture comprising ferritic grains of 3 &mgr;m or less in diameter, and has a protective coating film on the surface; it is a high Cr ferritic heat-resistant steel improved in oxidation resistance without causing drop in high temperature strength or in toughness.
    Type: Application
    Filed: August 13, 2004
    Publication date: December 16, 2004
    Inventors: Takehiko Itagaki, Shiro Torizuka, Hiroyuki Kutsumi
  • Publication number: 20040060621
    Abstract: The invention provides a ferritic heat-resistant steel having excellent high-temperature oxidation resistance, especially excellent steam oxidation-resistant characteristics. In high-Cr ferritic heat-resistant steel, ultra-fine oxide particles having a size of not larger than 1 &mgr;m are formed just below the oxide films and formed on the steel base, whereby the adhesiveness between the films and the base is enhanced. The ferritic heat-resistant steel contains Cr in an amount of from 8.0 to 13.0% by weight, and at least one of Rh and Ir in a total amount of from 0.3 to 5.0% by weight.
    Type: Application
    Filed: September 30, 2003
    Publication date: April 1, 2004
    Inventors: Nobuyuki Fujitsuna, Fujio Abe, Takehiko Itagaki, Masaki Igarashi, Seiichi Muneki, Kazuhiro Kimura, Hideaki Kushima
  • Publication number: 20030127163
    Abstract: The invention provides a ferritic heat-resistant steel having excellent high-temperature oxidation resistance, especially excellent steam oxidation-resistant characteristics. In high-Cr ferritic heat-resistant steel, ultra-fine oxide particles having a size of not larger than 1 &mgr;m are formed just below the oxide films and formed on the steel base, whereby the adhesiveness between the films and the base is enhanced. The ferritic heat-resistant steel contains Cr in an amount of from 8.0 to 13.0% by weight, and at least one of Rh and Ir in a total amount of from 0.3 to 5.0% by weight.
    Type: Application
    Filed: July 22, 2002
    Publication date: July 10, 2003
    Inventors: Nobuyuki Fujitsuna, Fujio Abe, Takehiko Itagaki, Masaaki Igarashi, Seiichi Muneki, Kazuhiro Kimura, Hideaki Kushima
  • Publication number: 20020011285
    Abstract: The invention provides a ferritic heat-resistant steel having excellent high-temperature oxidation resistance, especially excellent steam oxidation-resistant characteristics. In high-Cr ferritic heat-resistant steel, ultra-fine oxide particles having a size of not larger than 1 &mgr;m are formed just below the oxide films and formed on the steel base, whereby the adhesiveness between the films and the base is enhanced. The ferritic heat-resistant steel contains Cr in an amount of from 8.0 to 13.0% by weight, and at least one of Rh and Ir in a total amount of from 0.3 to 5.0% by weight.
    Type: Application
    Filed: September 21, 1998
    Publication date: January 31, 2002
    Inventors: NOBUYUKI FUJITSUNA, FUJIO ABE, TAKEHIKO ITAGAKI, MASAAKI IGARASHI, SEIICHI MUNEKI, KAZUHIRO KIMURA, HIDEAKI KUSHIMA