Patents by Inventor Takehiko Sasazuki

Takehiko Sasazuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8263346
    Abstract: The present invention provides a animal model useful in identifying a molecule controlling in a lymphocyte-specific manner migration and thus elucidating immune-related diseases and pathogenic conditions such as allergy, autoimmune diseases, GvH and graft rejections at a molecular level, or in developing a novel therapy. A nonhuman animal model such as a DOCK2 knockout mouse, in which the function to control lymphocyte migration has been deleted or suppressed, is generated by deleting DOCK2 gene on the chromosome. In this DOCK2 knockout mouse, the function of activating Rac to mediate actin cyteskeleton, the lymphocyte migration function in response to stimuli with chemokines such as SLC, SDF-1, BLC, the homing function to secondary lymphoid organs such as spleen, lymph nodes and Peyer's patches, and the function of emigrating mature thymic T cells into peripheral blood in response to stimulus with chemokine ELC are impaired, and as a result of this, immune responses are suppressed.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: September 11, 2012
    Assignee: Japan Science and Technology Agency
    Inventors: Yoshinori Fukui, Takehiko Sasazuki
  • Publication number: 20100173327
    Abstract: The present invention provides a animal model useful in identifying a molecule controlling in a lymphocyte-specific manner migration and thus elucidating immune-related diseases and pathogenic conditions such as allergy, autoimmune diseases, GvH and graft rejections at a molecular level, or in developing a novel therapy. A nonhuman animal model such as a DOCK2 knockout mouse, in which the function to control lymphocyte migration has been deleted or suppressed, is generated by deleting DOCK2 gene on the chromosome. In this DOCK2 knockout mouse, the function of activating Rac to mediate actin cyteskeleton, the lymphocyte migration function in response to stimuli with chemokines such as SLC, SDF-1, BLC, the homing function to secondary lymphoid organs such as spleen, lymph nodes and Peyer's patches, and the function of emigrating mature thymic T cells into peripheral blood in response to stimulus with chemokine ELC are impaired, and as a result of this, immune responses are suppressed.
    Type: Application
    Filed: January 29, 2010
    Publication date: July 8, 2010
    Inventors: Yoshinori FUKUI, Takehiko Sasazuki
  • Publication number: 20090233314
    Abstract: The present invention is related to provide a method for screening a substance interfering in the association of DOCK2 and ELMO1, a method for screening a substance interfering in the association of ELMO1 and Tiam1, and a method for searching a therapeutic agent for immune related diseases such as allergy, autoimmune diseases, GvH, graft rejection with the use of these searching methods, and so on. It was found that in DOCK2-mutant lacking 504 amino acid residues at the N terminus of DOCK2, Rac-activating ability was significantly decreased, and that actin polymerization could not be induced, and ELMO1 was identified as a molecule binding to this domain. It was found that DOCK2 was associated to ELMO1 via SH3 domain. Moreover, it was found that ELMO1 is bound with Tiam1 functioning as Rac-specific GDP/GTP exchange factor (GEF). It was found that DOCK2 activates Rac by recruiting Tiam1 via ELMO1.
    Type: Application
    Filed: May 6, 2009
    Publication date: September 17, 2009
    Inventors: Yoshinori Fukui, Takehiko Sasazuki
  • Patent number: 7541153
    Abstract: The present invention is related to provide a method for screening a substance interfering in the association of DOCK2 and ELMO1, a method for screening a substance interfering in the association of ELMO1 and Tiam1, and a method for searching a therapeutic agent for immune related diseases such as allergy, autoimmune diseases, GvH, graft rejection with the use of these searching methods, and so on. It was found that in DOCK2-mutant lacking 504 amino acid residues at the N terminus of DOCK2, Rac-activating ability was significantly decreased, and that actin polymerization could not be induced, and ELMO1 was identified as a molecule binding to this domain. It was found that DOCK2 was associated to ELMO1 via SH3 domain. Moreover, it was found that ELMO1 is bound with Tiam1 functioning as Rac-specific GDP/GTP exchange factor (GEF). It was found that DOCK2 activates Rac by recruiting Tiam1 via ELMO1.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: June 2, 2009
    Assignee: Japan Science and Technology Agency
    Inventors: Yoshinori Fukui, Takehiko Sasazuki
  • Publication number: 20080167457
    Abstract: The present invention provides a animal model useful in identifying a molecule controlling in a lymphocyte-specific manner migration and thus elucidating immune-related diseases and pathogenic conditions such as allergy, autoimmune diseases, GvH and graft rejections at a molecular level, or in developing a novel therapy. A nonhuman animal model such as a DOCK2 knockout mouse, in which the function to control lymphocyte migration has been deleted or suppressed, is generated by deleting DOCK2 gene on the chromosome. In this DOCK2 knockout mouse, the function of activating Rac to mediate actin cyteskeleton, the lymphocyte migration function in response to stimuli with chemokines such as SLC, SDF-1, BLC, the homing function to secondary lymphoid organs such as spleen, lymph nodes and Peyer's patches, and the function of emigrating mature thymic T cells into peripheral blood in response to stimulus with chemokine ELC are impaired, and as a result of this, immune responses are suppressed.
    Type: Application
    Filed: October 9, 2007
    Publication date: July 10, 2008
    Inventors: Yoshinori Fukui, Takehiko Sasazuki
  • Publication number: 20080160613
    Abstract: The present invention provides a animal model useful in identifying a molecule controlling in a lymphocyte-specific manner migration and thus elucidating immune-related diseases and pathogenic conditions such as allergy, autoimmune diseases, GvH and graft rejections at a molecular level, or in developing a novel therapy. A nonhuman animal model such as a DOCK2 knockout mouse, in which the function to control lymphocyte migration has been deleted or suppressed, is generated by deleting DOCK2 gene on the chromosome. In this DOCK2 knockout mouse, the function of activating Rac to mediate actin cytoskeleton, the lymphocyte migration function in response: to stimuli with chemokines such as SLC, SDF-1, BLC, the homing function to secondary lymphoid organs such as spleen, lymph nodes and Peyer's patches, and the function of emigrating mature thymic T cells into peripheral blood in response to stimulus with chemokine ELC are impaired, and as a result of this, immune responses are suppressed.
    Type: Application
    Filed: October 9, 2007
    Publication date: July 3, 2008
    Inventors: Yoshinori Fukui, Takehiko Sasazuki
  • Patent number: 7312373
    Abstract: The present invention provides a animal model useful in identifying a molecule controlling in a lymphocyte-specific manner migration and thus elucidating immune-related diseases and pathogenic conditions such as allergy, autoimmune diseases, GvH and graft rejections at a molecular level, or in developing a novel therapy. A nonhuman animal model such as a DOCK2 knockout mouse, in which the function to control lymphocyte migration has been deleted or suppressed, is generated by deleting DOCK2 gene on the chromosome. In this DOCK2 knockout mouse, the function of activating Rac to mediate actin cyteskeleton, the lymphocyte migration function in response to stimuli with chemokines such as SLC, SDF-1, BLC, the homing function to secondary lymphoid organs such as spleen, lymph nodes and Peyer's patches, and the function of emigrating mature thymic T cells into peripheral blood in response to stimulus with chemokine ELC are impaired, and as a result of this, immune responses are suppressed.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: December 25, 2007
    Assignee: Japan Science and Technology Agency
    Inventors: Yoshinori Fukui, Takehiko Sasazuki
  • Publication number: 20060234294
    Abstract: The present invention is related to provide a method for screening a substance interfering in the association of DOCK2 and ELMO1, a method for screening a substance interfering in the association of ELMO1 and Tiam1, and a method for searching a therapeutic agent for immune related diseases such as allergy, autoimmune diseases, GvH, graft rejection with the use of these searching methods, and so on. It was found that in DOCK2-mutant lacking 504 amino acid residues at the N terminus of DOCK2, Rac-activating ability was significantly decreased, and that actin polymerization could not be induced, and ELMO1 was identified as a molecule binding to this domain. It was found that DOCK2 was associated to ELMO1 via SH3 domain. Moreover, it was found that ELMO1 is bound with Tiam1 functioning as Rac-specific GDP/GTP exchange factor (GEF). It was found that DOCK2 activates Rac by recruiting Tiam1 via ELMO1.
    Type: Application
    Filed: November 14, 2003
    Publication date: October 19, 2006
    Inventors: Yoshinori Fukui, Takehiko Sasazuki
  • Publication number: 20050071894
    Abstract: The present invention provides a animal model useful in identifying a molecule controlling in a lymphocyte-specific manner migration and thus elucidating immune-related diseases and pathogenic conditions such as allergy, autoimmune diseases, GvH and graft rejections at a molecular level, or in developing a novel therapy. A nonhuman animal model such as a DOCK2 knockout mouse, in which the function to control lymphocyte migration has been deleted or suppressed, is generated by deleting DOCK2 gene on the chromosome. In this DOCK2 knockout mouse, the function of activating Rac to mediate actin cyteskeleton, the lymphocyte migration function in response to stimuli with chemokines such as SLC, SDF-1, BLC, the homing function to secondary lymphoid organs such as spleen, lymph nodes and Peyer's patches, and the function of emigrating mature thymic T cells into peripheral blood in response to stimulus with chemokine ELC are impaired, and as a result of this, immune responses are suppressed.
    Type: Application
    Filed: July 7, 2004
    Publication date: March 31, 2005
    Inventors: Yoshinori Fukui, Takehiko Sasazuki