Patents by Inventor Takehiro Ohno

Takehiro Ohno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6562157
    Abstract: A manufacturing method, particularly a forging treatment and a heat treatment method of a Ni-based alloy having sulfidation-corrosion resistance used for component members of corrosion-resistant high-temperature equipment, that is, Waspaloy (a trademark of United Technologies) or its improved Ni-based alloy wherein the high temperature sulfidation-corrosion resistance of the alloy can be improved while maintaining hot strength properties is disclosed. A Ni-based alloy used for the method consists essentially of 0.005 to 0.1% C, 18 to 21% Cr, 12 to 15% Co, 3.5 to 5.0% Mo, not more than 3.25% Ti and 1.2 to 4.0% Al (expressed in mass percentage), with the balance substantially comprising Ni.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: May 13, 2003
    Assignees: Hitachi Metals, Ltd., Ebara Corporation
    Inventors: Toshiaki Nonomura, Takehiro Ohno, Toshihiro Uehara, Hiroshi Yakuwa, Matsuho Miyasaka, Shuhei Nakahama, Shigeru Sawada
  • Publication number: 20030063994
    Abstract: Provided is a steel for separators of solid-good oxide type fuel cells, which forms oxide films having electrical conductivity at 700 to 950° C. or so, has good oxidation resistance and, in particular, resistance to exfoliation even in the case of long hours of use, is excellent in impact properties at room temperature, shows a small difference in thermal expansion from the electrolyte, and is inexpensive.
    Type: Application
    Filed: April 26, 2002
    Publication date: April 3, 2003
    Applicant: HITACHI METALS, LTD.
    Inventors: Toshihiro Uehara, Akihiro Toji, Takehiro Ohno
  • Patent number: 6527879
    Abstract: There are disclosed a piston ring material and a piston ring both having such superior properties contradictory each other as the sliding property required in a piston ring and the mechanical properties of a steel wire material subjected to a manufacture process. The piston ring material or the piston ring consists essentially, by mass, of not less than 0.3% but less than 0.8% C, 0.1 to 3.0% Si, 0.1 to 3.0% Mn, 0.03 to 0.3% S, 0.3 to 6.0% Cr, preferably 3.0 to 6.0% or 0.3 to 1.0% Cr, 0 to 3.0% Cu, and the balance Fe, and the distribution state of sulfide inclusions with a maximum diameter/minimum size≧3 observed on structure parallel to the outer peripheral surface of the formed piston ring is such that an intersecting angle made between straight lines passing the maximum size of two of the sulfide inclusions is not more than 30 degrees. Further, the area ratio of nonmetallic inclusions occupying the structure is 2.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: March 4, 2003
    Assignee: Hitachi Metals Ltd.
    Inventors: Kunichika Kubota, Takehiro Ohno, Yoshiki Masugata
  • Patent number: 6447624
    Abstract: A manufacturing method, particularly a heat treatment method of a Ni-based alloy having sulfidation-corrosion resistance used for component members of corrosion-resistant high-temperature equipment, that is, Waspaloy (a trademark of United Technologies) or its improved Ni-based alloy wherein the high temperature sulfidation-corrosion resistance of the alloy can be improved while maintaining hot strength properties is disclosed. A Ni-based alloy used for the method consists essentially of 0.005 to 0.1% C, 18 to 21% Cr, 12 to 15% Co, 3.5 to 5.0% Mo, not more than 3.25% Ti and 1.2 to 4.0% Al (expressed in mass percentage), with the balance substantially comprising Ni. In the manufacturing method of a Ni-based alloy having improved sulfidation-corrosion resistance, the alloy is, after solution heat treatment, subjected to stabilizing treatment at a temperature not lower than 860° C. and not higher than 920° C. for 1 to 16 hours, and aging treatment at a temperature not lower than 680° C.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: September 10, 2002
    Assignees: Hitachi Metals, Ltd., Ebara Corporation
    Inventors: Toshiaki Nonomura, Takehiro Ohno, Toshihiro Uehara, Hiroshi Yakuwa, Matsuho Miyasaka, Shuhei Nakahama, Shigeru Sawada
  • Publication number: 20020053376
    Abstract: A manufacturing method, particularly a forging treatment and a heat treatment method of a Ni-based alloy having sulfidation-corrosion resistance used for component members of corrosion-resistant high-temperature equipment, that is, Waspaloy (a trademark of United Technologies) or its improved Ni-based alloy wherein the high temperature sulfidation-corrosion resistance of the alloy can be improved while maintaining hot strength properties is disclosed. A Ni-based alloy used for the method consists essentially of 0.005 to 0.1% C, 18 to 21% Cr, 12 to 15% Co, 3.5 to 5.0% Mo, not more than 3.25% Ti and 1.2 to 4.0% Al (expressed in mass percentage), with the balance substantially comprising Ni.
    Type: Application
    Filed: July 17, 2001
    Publication date: May 9, 2002
    Applicant: HITACHI METALS, LTD.
    Inventors: Toshiaki Nonomura, Takehiro Ohno, Toshihiro Uehara, Hiroshi Yakuwa, Matsuho Miyasaka, Shuhei Nakahama, Shigeru Sawada
  • Publication number: 20020005616
    Abstract: There are disclosed a piston ring material and a piston ring both having such superior properties contradictory each other as the sliding property required in a piston ring and the mechanical properties of a steel wire material subjected to a manufacture process. The piston ring material or the piston ring consists essentially, by mass, of not less than 0.3% but less than 0.8% C, 0.1 to 3.0% Si, 0.1 to 3.0% Mn, 0.03 to 0.3% S, 0.3 to 6.0% Cr, preferably 3.0 to 6.0% or 0.3 to 1.0% Cr, 0 to 3.0% Cu, and the balance Fe, and the distribution state of sulfide inclusions with a maximum diameter/minimum size≧3 observed on structure parallel to the outer peripheral surface of the formed piston ring is such that an intersecting angle made between straight lines passing the maximum size of two of the sulfide inclusions is not more than 30 degrees. Further, the area ratio of nonmetallic inclusions occupying the structure is 2.
    Type: Application
    Filed: June 20, 2001
    Publication date: January 17, 2002
    Applicant: HITACHI METALS, LTD.
    Inventors: Kunichika Kubota, Takehiro Ohno, Yoshiki Masugata
  • Publication number: 20010039984
    Abstract: A manufacturing method, particularly a heat treatment method of a Ni-based alloy having sulfidation-corrosion resistance used for component members of corrosion-resistant high-temperature equipment, that is, Waspaloy (a trademark of United Technologies) or its improved Ni-based alloy wherein the high temperature sulfidation-corrosion resistance of the alloy can be improved while maintaining hot strength properties is disclosed. A Ni-based alloy used for the method consists essentially of 0.005 to 0.1% C, 18 to 21% Cr, 12 to 15% Co, 3.5 to 5.0% Mo, not more than 3.25% Ti and 1.2 to 4.0% Al (expressed in mass percentage), with the balance substantially comprising Ni. In the manufacturing method of a Ni-based alloy having improved sulfidation-corrosion resistance, the alloy is, after solution heat treatment, subjected to stabilizing treatment at a temperature not lower than 860° C. and not higher than 920° C. for 1 to 16 hours, and aging treatment at a temperature not lower than 680° C.
    Type: Application
    Filed: April 5, 2001
    Publication date: November 15, 2001
    Inventors: Toshiaki Nonomura, Takehiro Ohno, Toshihiro Uehara, Hiroshi Yakuwa, Matsuho Miyasaka, Shuhei Nakahama, Shigeru Sawada
  • Patent number: 6221183
    Abstract: A high-strength low-thermal-expansion alloy consisting of, by weight, 0.06 to 0.50% C, 25 to 65% in total of one or both of 65% or less Co and less than 30% Ni, and balance of Fe as a main component, other optional elements and unavoidable impurities, and having a primary phase of austenite phase and martensite phase induced by working. A wire is made from the alloy.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: April 24, 2001
    Assignee: Hitachi Metals, Ltd.
    Inventors: Koji Sato, Rikizo Watanabe, Takehiro Ohno, Yoshiki Masugata, Minoru Takuwa, Shigeaki Sato, Yoshimi Senda
  • Patent number: 6051083
    Abstract: In order to provide a high strength Ni-base superalloy for directionally solidified castings, which is prevented from solidification cracking at the casting, having a sufficient grain boundary strength for ensuring reliability during its operation and a superior high temperature concurrently, a high strength Ni-base superalloy for directionally solidified castings having a superior grain boundary strength, which contains C: 0.05% to less than 0.1%, B: 0.015% to 0.04%, Hf: 0.01.about.less than 0.5%, Zr: less than 0.01%, Cr: 1.5%.about.16%, Mo: utmost 6%, W: 2.about.12%, Re: 0.1.about.9%, Ta: 2.about.12%, Nb: utmost 4%, Al: 4.5.about.6.5%, Ti: less than 0.5%, Co: less than 9%, and Ni: at least 60% in weight, is disclosed.
    Type: Grant
    Filed: February 7, 1997
    Date of Patent: April 18, 2000
    Assignees: Hitachi, Ltd., Hitachi Metals
    Inventors: Hideki Tamaki, Akira Yoshinari, Akira Okayama, Mitsuru Kobayashi, Kagehiro Kageyama, Takehiro Ohno
  • Patent number: 5916382
    Abstract: A superalloy having more excellent hot corrosion resistance than conventional single crystal alloys, oxidation resistance levels as high as that of conventional single crystal alloys, high strength, and creep rupture strength; single crystal members used for a blade or a nozzle produced by utilizing such an alloy; and a combined cycle power generation system produced by utilizing such members. A highly hot corrosion resistant and high-strength superalloy consisting essentially of, by weight, 6-12% Cr, 4.5-6.5% Al, 2-12% W, 2.5-10% Ta, not more than 5.8% Mo, 0.1-3% Co, 0.2-3% Nb, 0.1-4% Re, not more than 0.3% Hf, and the balance being Ni and unavoidable impurities; single crystal members used for a blade or a nozzle produced utilizing such an alloy; and a combined cycle power generation system produced by utilizing such members.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: June 29, 1999
    Assignees: Hitachi, Ltd., Hitachi Metals, Ltd.
    Inventors: Koji Sato, Takehiro Ohno, Ken Yasuda, Hideki Tamaki, Akira Yoshinari
  • Patent number: 5660938
    Abstract: An FE--Ni--Cr-base superalloy consists essentially of, by weight, up to 0.15% C, up to 1.0% Si, up to 3.0% Mn, 30 to 49% Ni, 10 to 18% Cr, 1.6 to 3.0% Al, one or more elements selected from Groups IVa and Va whose amount or total amount is 1.5 to 8.0%, the balance being Fe, optionally, minor amounts of other intentionally added elements, and unavoidable impurities. The optional other elements which can be intentionally added to or omitted from the alloy include Mo, W, Co, B, Mg, Ca, Re, Y and REM. The superalloy is suitable for forming engine valves, knitted mesh supporters for exhaust gas catalyzers and the like, and has excellent high-temperature strength and normal-temperature ductility after long-time heating, as well as sufficient oxidation resistance properties for these uses.
    Type: Grant
    Filed: March 28, 1996
    Date of Patent: August 26, 1997
    Assignees: Hitachi Metals, Ltd.,, Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Koji Sato, Takehiro Ohno, Katsuaki Sato, Tsutomu Saka
  • Patent number: 5370838
    Abstract: An Fe-base superalloy essentially consisting of up to 0.20% C, up to 1.0% Si, up to 2.0% Mn, more than 25% and less than 30% Ni, 10 to 15% Cr, one or both of not less than 0.05% and less than 1.0% Mo and not less than 0.05% and less than 2.0% W so that an amount of Mo+0.5 W is not less than 0.05 and less than 1.0, 0.7 to 2.0% Al, 2.5 to 4.0% Ti, 0.05 to 1.0% Nb, and the balance being substantially Fe except impurities.
    Type: Grant
    Filed: March 30, 1994
    Date of Patent: December 6, 1994
    Assignee: Hitachi Metals, Ltd.
    Inventors: Koji Sato, Takehiro Ohno
  • Patent number: 4976791
    Abstract: This invention relates to a heat resistant single-crystal nickel-base super alloy that possesses microstructural stability and excellent creep rupture strength and oxidation resistance. This alloy is composed of 4-9% chromium, 4-6.5% aluminum, 5-8.5% wolfram, 5-8.5% tantalum, 3-6% molybdenum, 0.01-0.30% hafnium, 0.02-4% cobalt by weight, and the balance of nickel and incidental elements and meets the conditional expression wolfram+tantalum<16%. The preferable chemcial composition of this alloy is approximately 6.4% chromium, approximately 5.1% aluminum, approximately 7.3% wolfram, 7.3% tantalum, approximately 4.3% molybdenum, approximately 0.1% hafnium, approximately 1% cobalt by weight, and the balance of nickel and incidental elements.
    Type: Grant
    Filed: January 19, 1990
    Date of Patent: December 11, 1990
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takehiro Ohno, Rikizo Watanabe
  • Patent number: 4802934
    Abstract: A single-crystal Ni-based super-heat-resistant alloy consisting essentially of, by weight percentage, 4 to 10% of Cr, 4 to 6.5% of Al, 4 to 10% of W, 4 to 9% of Ta, 1.5 to 6% of Mo, and the balance substantially Ni and impurities; or the alloy containing not greater than 12% of Co in addition to the above composition; wherein the contents of W, Ta and Mo are selected to meet the following condition: 1/2.W+1/2.Ta+Mo=9.5% to 13.5%.
    Type: Grant
    Filed: November 5, 1986
    Date of Patent: February 7, 1989
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takehiro Ohno, Rikizo Watanabe
  • Patent number: 4740354
    Abstract: A nickel-base cast alloy for use in high-temperature forging dies operable in the atmosphere, consisting essentially of 4-10 weight % of Al, 13-23 weight % of Mo and the balance of Ni and impurities. The nickel-base cast alloy may further contain up to 0.1 weight % of at least one of rare earth metals and Y. It may also contain up to 15 weight % of W and/or Ta substituting for a part of Mo. Ni may be replaced by up to 20 weight % of Co. The cast alloy of the present invention has high resistance to compression deformation and oxidation.
    Type: Grant
    Filed: September 19, 1986
    Date of Patent: April 26, 1988
    Assignee: Hitachi, Metals Ltd.
    Inventors: Rikizo Watanabe, Takehiro Ohno, Toshiaki Nonomura