Patents by Inventor TAKEMASA YAMASAKI

TAKEMASA YAMASAKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11945031
    Abstract: A method for manufacturing an additively-manufactured object in which deposition is performed by melting and solidifying a metal depending on three-dimensional shape data of a target shape, includes: acquiring the three-dimensional shape data; creating a deposition plan in which a formation track and a heating condition of the metal are determined; determining a difference between a shape of the additively-manufactured object that thermally contracts by cooling after deposition and a shape of the three-dimensional shape data by an operation; modifying the deposition plan until the difference falls within a predetermined allowable range; and additively manufacturing the additively-manufactured object based on the deposition plan in which the difference falls within the allowable range.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: April 2, 2024
    Assignee: KOBE STEEL, LTD.
    Inventors: Takemasa Yamasaki, Tatsuya Fujii, Shinji Sato, Takeshi Yamada
  • Patent number: 11806820
    Abstract: An additively manufactured object formed by depositing weld bead layers, each of the weld bead layers being obtained by melting and solidifying a filler metal made of a mild steel, the additively manufactured object includes a plurality of the weld bead layers having a ferrite phase with an average grain diameter of 11 ?m or less in a part except for a surface oxide film.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: November 7, 2023
    Assignee: KOBE STEEL, LTD.
    Inventors: Shinji Sato, Takeshi Yamada, Takemasa Yamasaki
  • Patent number: 11772194
    Abstract: A method for designing an additively-manufactured object includes: a slicing step of slicing a shape of the additively-manufactured object into weld bead layers each having a height corresponding to one bead layer using data of the shape of the additively-manufactured object, thereby generating a plurality of virtual bead layers; a reference direction setting step of setting, as a reference direction, a direction in which the sliced layer of the additively-manufactured object is continuously provided and extended in an intermediate layer disposed at a deposition-direction center of the plurality of virtual bead layers; and a bead adjusting step of adjusting a bead size of the weld bead to be formed in the plurality of virtual bead layers depending on a bead shape in a section perpendicular to the reference direction.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: October 3, 2023
    Assignee: KOBE STEEL, LTD.
    Inventors: Takemasa Yamasaki, Tatsuya Fujii, Shinji Sato, Takeshi Yamada
  • Patent number: 11772196
    Abstract: In the present application, a shaped article W is produced, the shaped article including: a plurality of blades provided around a shaft, with an interval disposed therebetween in the circumferential direction; and curved surface-shaped recesses present in between the blades. This method for producing a shaped article includes: a shaping step, in which welding beads where filler material has been melted and solidified at the peripheral surface are layered on a base material having a circular cross-section of a greater radius than the bottom circle that passes through the lowest part of the recess, thus forming a shaped section that will become a blade; and a cutting step in which part of the surface of the shaped section and the peripheral surface of the base material is cut to form a blade, and the recesses between the blades are also formed.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: October 3, 2023
    Assignee: KOBE STEEL, LTD.
    Inventors: Shinji Sato, Takeshi Yamada, Takemasa Yamasaki
  • Patent number: 11654500
    Abstract: A method for joining an additively-manufactured component includes welding a plurality of additively-manufactured components via a weld joint to fabricate an integral structure. The additively-manufactured components are built by repeatedly depositing a weld bead layer of a next layer on a weld bead layer formed of a weld bead obtained by melting and solidifying a filler metal by use of an arc, and the weld joint is built along with the deposition.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: May 23, 2023
    Assignee: KOBE STEEL, LTD.
    Inventors: Takeshi Yamada, Shinji Sato, Takemasa Yamasaki
  • Publication number: 20230030278
    Abstract: An offline programming device includes an input unit that receives input of a plurality of teaching points, a creation unit that determines intermediate point located between adjacent teaching points and creates an operation program for the robot, a simulation unit that simulates a movement trajectory of the robot when the operation program is executed, and a display unit that displays a GUI screen representing the movement trajectory. The GUI screen includes a first display area showing a time series sequence of the plurality of teaching points and a second display area. When an error is detected in the movement trajectory, a section between the teaching points including the point in time when the error occurs is displayed in the first display area according to a first error display method.
    Type: Application
    Filed: December 15, 2020
    Publication date: February 2, 2023
    Applicant: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Tomoki SAKUMA, Junichi KAWABATA, Hiroyuki MORIISHI, Takemasa YAMASAKI, Shoji SHIMIZU, Yuhei TANIUCHI
  • Patent number: 11554438
    Abstract: A method for producing an additively manufactured object includes melting and solidifying a filler metal to form weld beads and depositing the weld beads adjoining each other, thereby forming a weld-bead layer, and repeatedly depositing a next weld-bead layer on the formed weld-bead layer to conduct additive manufacturing. The method includes a bead formation step of forming a new weld bead so as to fill a recess formed by at least three of the already formed weld beads, in a cross-section perpendicular to a longitudinal direction of the weld beads.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: January 17, 2023
    Assignee: KOBE STEEL, LTD.
    Inventors: Takemasa Yamasaki, Tatsuya Fujii, Shinji Sato, Takeshi Yamada
  • Patent number: 11524352
    Abstract: An additively manufactured object formed by depositing weld bead layers, each of the weld bead layers being obtained by melting and solidifying a filler metal made of a mild steel, the additively manufactured object includes a plurality of the weld bead layers having a ferrite phase with an average grain diameter of 11 ?m or less in a part except for a surface oxide film.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: December 13, 2022
    Assignee: Kobe Steel, Ltd.
    Inventors: Shinji Sato, Takeshi Yamada, Takemasa Yamasaki
  • Patent number: 11415962
    Abstract: Using three-dimensional shape data, the shape of a blade, which is an additive manufacturing product, is divided into multiple layers according to the height of a bead. Each layer of the additive manufacturing product that has been divided into multiple layers is divided by fitting regions of a set shape. By determining connecting lines for connecting the divided regions to each other and computing the extension directions of protrusions, planned lines for bead formation along said extension directions are determined. The additive manufacturing product is shaped by forming beads along planned bead formation lines.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: August 16, 2022
    Assignee: Kobe Steel, Ltd.
    Inventors: Takemasa Yamasaki, Tatsuya Fujii, Shinji Sato, Takeshi Yamada
  • Patent number: 11400535
    Abstract: A method for producing a built-up object, includes: producing maps beforehand, the maps indicating bead heights BH and bead widths BW corresponding to a base-surface inclination angle ? and a track inclination angle ?, in which the base-surface inclination angle is an angle between a base surface on which the weld beads are to be formed and a vertical direction, and the track inclination angle is an angle between a track direction of the torch and a vertical direction on the base surface; selecting a bead height BH0 and a bead width BW0 from the maps correspondingly to the base-surface inclination angle ? and the track inclination angle ? in forming a weld bead on the base surface; and forming the weld bead based on the selected bead height BH0 and bead width BW0.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: August 2, 2022
    Assignee: KOBE STEEL, LTD.
    Inventors: Takemasa Yamasaki, Shinji Sato, Takeshi Yamada, Tatsuya Fujii
  • Publication number: 20220126388
    Abstract: An additively manufactured object formed by depositing weld bead layers, each of the weld bead layers being obtained by melting and solidifying a filler metal made of a mild steel, the additively manufactured object includes a plurality of the weld bead layers having a ferrite phase with an average grain diameter of 11 ?m or less in a part except for a surface oxide film.
    Type: Application
    Filed: January 4, 2022
    Publication date: April 28, 2022
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD)
    Inventors: Shinji Sato, Takeshi Yamada, Takemasa Yamasaki
  • Patent number: 11292071
    Abstract: A method for producing a built-up object by melting and solidifying a filler metal to form weld beads on a base surface along a track for a torch and form the built-up object formed by the weld beads is provided. The built-up object includes a bead formation portion where a gravitational influence is maximum. The method includes: forming a supporting bead having a higher viscosity during weld-bead formation than other weld beads in the bead formation portion; and forming the other weld beads overlying the supporting bead.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: April 5, 2022
    Assignee: KOBE STEEL, LTD.
    Inventors: Takemasa Yamasaki, Tatsuya Fujii, Shinji Sato, Takeshi Yamada
  • Patent number: 11273511
    Abstract: A method for producing an additively manufactured object includes melting and solidifying a filler metal by use of an arc, and depositing and forming a plurality of layers of molten beads to produce a built-up object, and the method includes: shaping the molten bead of a previous layer; and monitoring a temperature of the molten bead of the previous layer. Shaping of the molten bead of a next layer is started when the temperature of the molten bead of the previous layer is equal to or lower than an allowable interpass temperature.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: March 15, 2022
    Assignee: Kobe Steel, Ltd.
    Inventors: Shinji Sato, Takeshi Yamada, Takemasa Yamasaki, Keisuke Okita
  • Publication number: 20210229182
    Abstract: A method for manufacturing an additively-manufactured object in which deposition is performed by melting and solidifying a metal depending on three-dimensional shape data of a target shape, includes: acquiring the three-dimensional shape data; creating a deposition plan in which a formation track and a heating condition of the metal are determined; determining a difference between a shape of the additively-manufactured object that thermally contracts by cooling after deposition and a shape of the three-dimensional shape data by an operation; modifying the deposition plan until the difference falls within a predetermined allowable range; and additively manufacturing the additively-manufactured object based on the deposition plan in which the difference falls within the allowable range.
    Type: Application
    Filed: May 31, 2019
    Publication date: July 29, 2021
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Takemasa YAMASAKI, Tatsuya FUJII, Shinji SATO, Takeshi YAMADA
  • Publication number: 20210178502
    Abstract: A method for producing a built-up object by melting and solidifying a filler metal to form weld beads on a base surface along a track for a torch and form the built-up object formed by the weld beads is provided. The built-up object includes a bead formation portion where a gravitational influence is maximum. The method includes: forming a supporting bead having a higher viscosity during weld-bead formation than other weld beads in the bead formation portion; and forming the other weld beads overlying the supporting bead.
    Type: Application
    Filed: October 30, 2018
    Publication date: June 17, 2021
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Takemasa YAMASAKI, Tatsuya FUJII, Shinji SATO, Takeshi YAMADA
  • Patent number: 10994359
    Abstract: Provided is a setting assistance device capable of informing that which welding condition should be corrected with a value as the limit in order to achieve the target quality. In a setting assistance device (40) of a welding condition which is a condition in welding, an input receiving unit (42) accepts designation of the target quality in welding, and a welding condition information output unit (44) outputs an item of a welding condition to be corrected to achieve the target quality, and limit information indicating a limit of a value which can be taken by the item of the welding condition to achieve the target quality, in accordance with the acceptance of the designation of the target quality by the input receiving unit (42).
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: May 4, 2021
    Assignee: KOBE STEEL, LTD.
    Inventors: Takemasa Yamasaki, Masatoshi Hida, Toshihiko Nishimura
  • Patent number: 10994370
    Abstract: In a track determination device, a CAD data acquisition unit acquires shape data that represents a shape of a three-dimensional formed object. A deposition direction setting unit generates control information for controlling a lamination device that laminates the molten metal in order to form a formed object, based on the shape data acquired by the CAD data acquisition unit. The control information is information indicating at least a specific deposition direction of the molten metal such that an error between a first deposition position set in advance and a second deposition position in accordance with an actual laminated state is reduced. A control program output unit outputs the control information generated by the deposition direction setting unit.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: May 4, 2021
    Assignee: Kobe Steel, Ltd.
    Inventor: Takemasa Yamasaki
  • Publication number: 20210114112
    Abstract: A method for depositing an additively-manufactured object using three-dimensional shape data indicating a shape of the additively-manufactured object, includes: dividing the shape of the additively-manufactured object of the three-dimensional shape data, into a plurality of polygon faces; extracting a column of plural polygon faces and sequentially providing index numbers from a start polygon face; detecting a terminal polygon face based on directions of a pair of adjacent polygon faces; providing a bead formation ON flag to polygon faces other than the terminal polygon face, and a bead formation OFF flag to the terminal polygon face; producing a bead map in which the index numbers and the flags provided to the polygon faces are associated with one another; referring to the bead map to obtain a bead continuous formation pass; and continuously forming the bead along the bead continuous formation pass.
    Type: Application
    Filed: February 25, 2019
    Publication date: April 22, 2021
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Takemasa YAMASAKI, Tatsuya FUJII, Shinji SATO, Takeshi YAMADA
  • Publication number: 20210080931
    Abstract: Using three-dimensional shape data, the shape of a blade, which is an additive manufacturing product, is divided into multiple layers according to the height of a bead. Each layer of the additive manufacturing product that has been divided into multiple layers is divided by fitting regions of a set shape. By determining connecting lines for connecting the divided regions to each other and computing the extension directions of protrusions, planned lines for bead formation along said extension directions are determined. The additive manufacturing product is shaped by forming beads along planned bead formation lines.
    Type: Application
    Filed: April 19, 2019
    Publication date: March 18, 2021
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Takemasa YAMASAKI, Tatsuya FUJII, Shinji SATO, Takeshi YAMADA
  • Publication number: 20200391316
    Abstract: A method for producing a built-up object, includes: producing maps beforehand, the maps indicating bead heights BH and bead widths BW corresponding to a base-surface inclination angle ? and a track inclination angle ?, in which the base-surface inclination angle is an angle between a base surface on which the weld beads are to be formed and a vertical direction, and the track inclination angle is an angle between a track direction of the torch and a vertical direction on the base surface; selecting a bead height BH0 and a bead width BW0 from the maps correspondingly to the base-surface inclination angle ? and the track inclination angle ? in forming a weld bead on the base surface; and forming the weld bead based on the selected bead height BH0 and bead width BW0.
    Type: Application
    Filed: November 6, 2018
    Publication date: December 17, 2020
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Takemasa YAMASAKI, Shinji SATO, Takeshi YAMADA, Tatsuya FUJII