Patents by Inventor Takeo Sakakubo

Takeo Sakakubo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8085511
    Abstract: A magnetoresistance effect element includes a magnetoresistance effect film including a magnetically pinned layer having a magnetic material film whose direction of magnetization is pinned substantially in one direction, a magnetically free layer having a magnetic material film whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic metal intermediate layer located between said pinned layer and said free layer. The element also includes a pair of electrodes electrically connected to the magnetoresistance effect film to supply a sense current perpendicularly to a film plane of the magnetoresistance effect film. At least one of the pinned layer and the free layer may include a thin-film insertion layer.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: December 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Yuzo Kamiguchi, Masatoshi Yoshikawa, Katsuhiko Koui, Hitoshi Iwasaki, Tomohiko Nagata, Takeo Sakakubo, Masashi Sahashi
  • Publication number: 20090034134
    Abstract: A magnetoresistance effect element includes a magnetoresistance effect film including a magnetically pinned layer having a magnetic material film whose direction of magnetization is pinned substantially in one direction, a magnetically free layer having a magnetic material film whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic metal intermediate layer located between said pinned layer and said free layer. The element also includes a pair of electrodes electrically connected to the magnetoresistance effect film to supply a sense current perpendicularly to a film plane of the magnetoresistance effect film. At least one of the pinned layer and the free layer may include a thin-film insertion layer.
    Type: Application
    Filed: September 23, 2008
    Publication date: February 5, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiromi Yuasa, Yuzo Kamiguchi, Masatoshi Yoshikawa, Katsuhiko Koul, Hitoshi Iwasaki, Tomohiko Nagata, Takeo Sakakubo, Masashi Sahashi
  • Patent number: 7443004
    Abstract: In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: October 28, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Yuzo Kamiguchi, Masatoshi Yoshikawa, Katsuhiko Koui, Hitoshi Iwasaki, Tomohiko Nagata, Takeo Sakakubo, Masashi Sahashi
  • Patent number: 7379278
    Abstract: A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer; and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film, The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: May 27, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Koui, Masatoshi Yoshikawa, Masayuki Takagishi, Masashi Sahashi, Takeo Sakakubo, Hitoshi Iwasaki
  • Patent number: 7145754
    Abstract: A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer, and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film. The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: December 5, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Koui, Masatoshi Yoshikawa, Masayuki Takagishi, Masashi Sahashi, Takeo Sakakubo, Hitoshi Iwasaki
  • Patent number: 7130164
    Abstract: A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer; and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film. The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: October 31, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Koui, Masatoshi Yoshikawa, Masayuki Takagishi, Masashi Sahashi, Takeo Sakakubo, Hitoshi Iwasaki
  • Publication number: 20060181814
    Abstract: A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer; and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film, The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer.
    Type: Application
    Filed: April 7, 2006
    Publication date: August 17, 2006
    Inventors: Katsuhiko Koui, Masatoshi Yoshikawa, Masayuki Takagishi, Masashi Sahashi, Takeo Sakakubo, Hitoshi Iwasaki
  • Patent number: 7071522
    Abstract: In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: July 4, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Yuzo Kamiguchi, Masatoshi Yoshikawa, Katsuhiko Koui, Hitoshi Iwasaki, Tomohiko Nagata, Takeo Sakakubo, Masashi Sahashi
  • Patent number: 7072153
    Abstract: A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer; and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film. The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: July 4, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Koui, Masatoshi Yoshikawa, Masayuki Takagishi, Masashi Sahashi, Takeo Sakakubo, Hitoshi Iwasaki
  • Patent number: 7038893
    Abstract: A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer; and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film. The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: May 2, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Koui, Masatoshi Yoshikawa, Masayuki Takagishi, Masashi Sahashi, Takeo Sakakubo, Hitoshi Iwasaki
  • Publication number: 20060071287
    Abstract: In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
    Type: Application
    Filed: November 22, 2005
    Publication date: April 6, 2006
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiromi Yuasa, Yuzo Kamiguchi, Masatoshi Yoshikawa, Katsuhiko Koui, Hitoshi Iwasaki, Tomohiko Nagata, Takeo Sakakubo, Masashi Sahashi
  • Publication number: 20050141144
    Abstract: A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer, and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film. The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer.
    Type: Application
    Filed: February 22, 2005
    Publication date: June 30, 2005
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Koui, Masatoshi Yoshikawa, Masayuki Takagishi, Masashi Sahashi, Takeo Sakakubo, Hitoshi Iwasaki
  • Publication number: 20050135018
    Abstract: A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer; and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film. The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer.
    Type: Application
    Filed: February 22, 2005
    Publication date: June 23, 2005
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Koui, Masatoshi Yoshikawa, Masayuki Takagishi, Masashi Sahashi, Takeo Sakakubo, Hitoshi Iwasaki
  • Publication number: 20050128650
    Abstract: A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer; and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film. The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer.
    Type: Application
    Filed: January 31, 2005
    Publication date: June 16, 2005
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Koui, Masatoshi Yoshikawa, Masayuki Takagishi, Masashi Sahashi, Takeo Sakakubo, Hitoshi Iwasaki
  • Publication number: 20040246634
    Abstract: In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
    Type: Application
    Filed: July 9, 2004
    Publication date: December 9, 2004
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiromi Yuasa, Yuzo Kamiguchi, Masatoshi Yoshikawa, Katsuhiko Koui, Hitoshi Iwasaki, Tomohiko Nagata, Takeo Sakakubo, Masashi Sahashi
  • Patent number: 6784509
    Abstract: In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: August 31, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Yuzo Kamiguchi, Masatoshi Yoshikawa, Katsuhiko Koui, Hitoshi Iwasaki, Tomohiko Nagata, Takeo Sakakubo, Masashi Sahashi
  • Patent number: 6751846
    Abstract: A method for manufacturing a magnetic head which includes a lower write pole having a projection, an upper write pole having a projection opposed to the projection of the lower write pole, and a magnetic gap interposed between the projection of the upper write pole and the projection of the lower write pole, comprising: a first step of making the magnetic gap on the projection of the lower write pole; a second step of making a non-magnetic material layer on the lower write pole, the non-magnetic material layer having a projection on its top surface in positional alignment with the projection of the lower write pole; a third step of making a mask layer on the non-magnetic material layer, the mask layer having an opening in which the top surface of the projection of the non-magnetic material layer is exposed; a fourth step of making a curved recess in the non-magnetic material layer by isotropically etching the non-magnetic material layer through the opening of the mask layer; a fifth step of making an approxim
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: June 22, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Susumu Hashimoto, Michiko Hara, Tomohiko Nagata, Kohichi Tateyama, Masatoshi Yoshikawa, Takeo Sakakubo, Hiroaki Yoda, Akio Hori, Takashi Koizumi
  • Publication number: 20040021990
    Abstract: A magnetoresistance effect element comprises a magnetoresistance effect film including a magnetically pinned layer whose direction of magnetization is pinned substantially in one direction, a magnetically free layer whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic intermediate layer located between the pinned layer and the free layer; and a pair of electrodes electrically connected to said magnetoresistance effect film to supply a sense current perpendicularly to a film plane of said magnetoresistance effect film, The intermediate layer has a first layer including a first region whose resistance is relatively high and second regions whose resistance is relatively low. The sense current preferentially flows through the second regions when the current passes the first layer.
    Type: Application
    Filed: March 28, 2003
    Publication date: February 5, 2004
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Koui, Masatoshi Yoshikawa, Masayuki Takagishi, Masashi Sahashi, Takeo Sakakubo, Hitoshi Iwasaki
  • Publication number: 20030188422
    Abstract: A method for manufacturing a magnetic head which includes a lower write pole having a projection, an upper write pole having a projection opposed to the projection of the lower write pole, and a magnetic gap interposed between the projection of the upper write pole and the projection of the upper write pole, comprising: a first step of making the magnetic gap on the projection of the lower write pole; a second step of making a non-magnetic material layer on the lower write pole, the non-magnetic material layer having a projection on its top surface in positional alignment with the projection of the lower write pole; a third step of making a mask layer on the non-magnetic material layer, the mask layer having an opening in which the top surface of the projection of the non-magnetic material layer is exposed; a fourth step of making a curved recess in the non-magnetic material layer by isotropically etching the non-magnetic material layer through the opening of the mask layer; a fifth step of making an approxim
    Type: Application
    Filed: March 31, 2003
    Publication date: October 9, 2003
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Susumu Hashimoto, Michiko Hara, Tomohiko Nagata, Kohichi Tateyama, Masatoshi Yoshikawa, Takeo Sakakubo, Hiroaki Yoda, Akio Hori, Takashi Koizumi
  • Publication number: 20030168673
    Abstract: In a spin valve type element, an interface insertion layer (32, 34) of a material exhibiting large spin-dependent interface scattering is inserted in a location of a magnetically pinned layer (16) or a magnetically free layer (20) closer to a nonmagnetic intermediate layer (18). A nonmagnetic back layer (36) may be additionally inserted as an interface not in contact with the nonmagnetic intermediate layer to increase the output by making use of spin-dependent interface scattering along the interface between the pinned layer and the nonmagnetic back layer or between the free layer and the nonmagnetic back layer.
    Type: Application
    Filed: August 14, 2002
    Publication date: September 11, 2003
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiromi Yuasa, Yuzo Kamiguchi, Masatoshi Yoshikawa, Katsuhiko Koui, Hitoshi Iwasaki, Tomohiko Nagata, Takeo Sakakubo, Masashi Sahashi