Patents by Inventor Takeru Okada

Takeru Okada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11417854
    Abstract: A plurality of light-emitting devices (10) include a plurality of light-emitting devices (10a), a plurality of light-emitting devices (10b), and a plurality of light-emitting devices (10c). The plurality of light-emitting devices (10) are aligned on a reflecting member (20). Six light-emitting devices (10c) are aligned in a straight line along one direction. Four light-emitting devices (10b) are aligned surrounding a region facing one ends of the six light-emitting devices (10c). Each of four light-emitting devices (10a) are aligned with each of the four light-emitting devices (10b) outside the four light-emitting devices (10b).
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: August 16, 2022
    Assignee: PIONEER CORPORATION
    Inventors: Takeru Okada, Chihiro Harada, Ayako Yoshida, Takashi Chuman
  • Patent number: 11411194
    Abstract: A light-emitting device (20) includes a first light-emitting member (10a) and a second light-emitting member (10b). Each of the first light-emitting member (10a) and the second light-emitting member (10b) includes a first surface (12) and a second surface (14), and light is emitted from the first surface (12). The first light-emitting member (10a) includes a first region (16a) and a second region (16b), the first region (16a) of the first light-emitting member (10a) being located on the second surface (14) side of the second light-emitting member (10b) and the second region (16b) of the first light-emitting member (10a) being located on the first surface (12) side of the second light-emitting member (10b).
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: August 9, 2022
    Assignee: PIONEER CORPORATION
    Inventors: Ayako Yoshida, Takashi Chuman, Makoto Matsukawa, Takeru Okada, Chihiro Harada, Akira Hirasawa
  • Publication number: 20210343806
    Abstract: A first electrode (110) has optical transparency, and a second electrode (130) has light reflectivity. An organic layer (120) is located between the first electrode (110) and the second electrode (130). Light-transmitting regions (a second region (104) and a third region (106)) are located between a plurality of light-emitting units (140). An insulating film (150) defines the light-emitting units (140) and includes tapers (152, 154). A sealing member (170) covers the light-emitting units (140) and the insulating film (150). A low reflection film (190) is located on the side opposite to a substrate (100) with the second electrode (130) therebetween. The low reflection film (190) covers at least one portion of the tapers (152 and 154).
    Type: Application
    Filed: July 6, 2021
    Publication date: November 4, 2021
    Inventor: Takeru OKADA
  • Patent number: 11094915
    Abstract: A light emitting device (10) includes a plurality of light emitting portions (140) and an inorganic layer (200). Each light emitting portion (140) has an anode (110), an organic layer (120), and a cathode (130). The inorganic layer (200) spreads over the plurality of light emitting portions (140), and continuously covers the plurality of light emitting portions (140). Thus, the inorganic layer (200) seals the plurality of light emitting portions (140). The organic layers (120) of the respective light emitting portions (140) are spaced apart from each other. Similarly, the cathodes (130) of the respective light emitting portions (140) are spaced apart from each other.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: August 17, 2021
    Assignee: PIONEER CORPORATION
    Inventor: Takeru Okada
  • Patent number: 11088228
    Abstract: A first electrode (110) has optical transparency, and a second electrode (130) has light reflectivity. An organic layer (120) is located between the first electrode (110) and the second electrode (130). Light-transmitting regions (a second region (104) and a third region (106)) are located between a plurality of light-emitting units (140). An insulating film (150) defines the light-emitting units (140) and includes tapers (152, 154). A sealing member (170) covers the light-emitting units (140) and the insulating film (150). A low reflection film (190) is located on the side opposite to a substrate (100) with the second electrode (130) therebetween. The low reflection film (190) covers at least one portion of the tapers (152 and 154).
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: August 10, 2021
    Assignee: PIONEER CORPORATION
    Inventor: Takeru Okada
  • Publication number: 20210242421
    Abstract: A plurality of light-emitting devices (10) include a plurality of light-emitting devices (10a), a plurality of light-emitting devices (10b), and a plurality of light-emitting devices (10c). The plurality of light-emitting devices (10) are aligned on a reflecting member (20). Six light-emitting devices (10c) are aligned in a straight line along one direction. Four light-emitting devices (10b) are aligned surrounding a region facing one ends of the six light-emitting devices (10c). Each of four light-emitting devices (10a) are aligned with each of the four light-emitting devices (10b) outside the four light-emitting devices (10b).
    Type: Application
    Filed: October 19, 2018
    Publication date: August 5, 2021
    Inventors: Takeru OKADA, Chihiro HARADA, Ayako YOSHIDA, Takashi CHUMAN
  • Publication number: 20210210729
    Abstract: A light-emitting unit (140) is formed on a substrate (100), and includes a light-transmitting first electrode (110), a light-reflective second electrode (130), and an organic layer (120) located between the first electrode (110) and the second electrode (130). A light-transmitting region is located between a plurality of light-emitting units (140). An insulating film (150) defines an end (142) of the light-emitting unit (140). A sealing member (200) is fixed to the light-emitting unit (140) directly or through an adhesive layer (210). In addition, a thickness of the substrate (100) is d, and a width of a portion of the second electrode (130) that is further on the outer side of the light-emitting unit (140) than the end (142) is W, d/2 W is established.
    Type: Application
    Filed: March 24, 2021
    Publication date: July 8, 2021
    Inventor: Takeru OKADA
  • Publication number: 20210143347
    Abstract: A light, emitting element includes a flexible plate-like portion having a glass substrate, and an organic functional layer formed on one surface side of the glass substrate. The organic functional layer includes a light emitting layer. When the plate-like portion is curved in a prescribed curving direction, and one surface of the plate-like portion is a concave surface, and the other surface thereof is a convex surface, a surface which is positioned on the concave surface side among both surfaces of the glass substrate is referred to as a first surface. When the plate-like portion is curved in a curving direction, and the one surface of the plate-like portion is a concave surface, and the other surface thereof is a convex surface, a compressive stress is applied to a portion whose distance from the first surface of the glass substrate is less than or equal to L (L>T/2).
    Type: Application
    Filed: January 22, 2021
    Publication date: May 13, 2021
    Inventor: Takeru OKADA
  • Patent number: 10991908
    Abstract: A light-emitting unit (140) is formed on a substrate (100), and includes a light-transmitting first electrode (110), a light-reflective second electrode (130), and an organic layer (120) located between the first electrode (110) and the second electrode (130). A light-transmitting region is located between a plurality of light-emitting units (140). An insulating film (150) defines an end (142) of the light-emitting unit (140). A sealing member (200) is fixed to the light-emitting unit (140) directly or through an adhesive layer (210). In addition, a thickness of the substrate (100) is d, and a width of a portion of the second electrode (130) that is further on the outer side of the light-emitting unit (140) than the end (142) is W, d/2?W is established.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: April 27, 2021
    Assignee: PIONEER CORPORATION
    Inventor: Takeru Okada
  • Patent number: 10937977
    Abstract: A light emitting element includes a flexible plate-like portion having a glass substrate, and an organic functional layer formed on one surface side of the glass substrate. The organic functional layer includes a light emitting layer. When the plate-like portion is curved in a prescribed curving direction, and one surface of the plate-like portion is a concave surface, and the other surface thereof is a convex surface, a surface which is positioned on the concave surface side among both surfaces of the glass substrate is referred to as a first surface. When the plate-like portion is curved in a curving direction, and the one surface of the plate-like portion is a concave surface, and the other surface thereof is a convex surface, a compressive stress is applied to a portion whose distance from the first surface of the glass substrate is less than or equal to L (L>T/2).
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: March 2, 2021
    Assignee: PIONEER CORPORATION
    Inventor: Takeru Okada
  • Patent number: 10930876
    Abstract: Each of a plurality of the light-emitting units (140) includes a first electrode (110), an organic layer (120), and a second electrode (130). The first electrode (110) is light-transmitting, and the second electrode (130) is light-reflective. The organic layer (120) is located between the first electrode (110) and the second electrode (130). The light-transmitting regions (104 and 106) are located between the plurality of light-emitting units (140). A sealing member (170) covers the plurality of light-emitting units (140) and the light-transmitting regions (104 and 106). The sealing member (170) is fixed directly or through an insulating layer (174) to at least one of a structure (for example, the second electrode 130) formed on a substrate (100), and the substrate (100). In addition, a haze value of the light-emitting device (10) is equal to or less than 2.0%, preferably equal to or less than 1.4%.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: February 23, 2021
    Assignee: PIONEER CORPORATION
    Inventors: Takeru Okada, Ayako Yoshida
  • Publication number: 20200295298
    Abstract: A light-emitting unit (140) is formed on a substrate (100), and includes a light-transmitting first electrode (110), a light-reflective second electrode (130), and an organic layer (120) located between the first electrode (110) and the second electrode (130). A light-transmitting region is located between a plurality of light-emitting units (140). An insulating film (150) defines an end (142) of the light-emitting unit (140). A sealing member (200) is fixed to the light-emitting unit (140) directly or through an adhesive layer (210). In addition, a thickness of the substrate (100) is d, and a width of a portion of the second electrode (130) that is further on the outer side of the light-emitting unit (140) than the end (142) is W, d/2?W is established.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 17, 2020
    Inventor: Takeru OKADA
  • Publication number: 20200259109
    Abstract: A light emitting element includes a flexible plate-like portion having a glass substrate, and an organic functional layer formed on one surface side of the glass substrate. The organic functional layer includes a light emitting layer. When the plate-like portion is curved in a prescribed curving direction, and one surface of the plate-like portion is a concave surface, and the other surface thereof is a convex surface, a surface which is positioned on the concave surface side among both surfaces of the glass substrate is referred to as a first surface. When the plate-like portion is curved in a curving direction, and the one surface of the plate-like portion is a concave surface, and the other surface thereof is a convex surface, a compressive stress is applied to a portion whose distance from the first surface of the glass substrate is less than or equal to L (L>T/2).
    Type: Application
    Filed: April 23, 2020
    Publication date: August 13, 2020
    Inventor: Takeru OKADA
  • Publication number: 20200251684
    Abstract: A light-emitting unit (140) is located on a first surface (100a) side of a substrate (100). At least a portion of an organic layer is located between the light-emitting unit (140) and an end (100c) of the substrate (100). In the example shown in FIG. 1, this organic layer is an organic insulating film (150) . Below, a description will be given with the organic layer as the organic insulating film (150). However, this organic layer maybe an organic layer (120) which will be described later. A first covering layer (200) covers the light-emitting unit (140) and the organic insulating film (150). An intermediate layer (300) is in contact with a surface of the first covering layer (200) on the opposite side of the substrate (100), and at least a portion of the intermediate layer is located more to the end (100c) side than the organic insulating film (150). In addition, the intermediate layer (300) includes a desiccant.
    Type: Application
    Filed: February 28, 2018
    Publication date: August 6, 2020
    Inventor: Takeru OKADA
  • Publication number: 20200168679
    Abstract: A first electrode (110) has optical transparency, and a second electrode (130) has light reflectivity. An organic layer (120) is located between the first electrode (110) and the second electrode (130). Light-transmitting regions (a second region (104) and a third region (106)) are located between a plurality of light-emitting units (140). An insulating film (150) defines the light-emitting units (140) and includes tapers (152, 154). A sealing member (170) covers the light-emitting units (140) and the insulating film (150). A low reflection film (190) is located on the side opposite to a substrate (100) with the second electrode (130) therebetween. The low reflection film (190) covers at least one portion of the tapers (152 and 154).
    Type: Application
    Filed: January 29, 2020
    Publication date: May 28, 2020
    Inventor: Takeru OKADA
  • Patent number: 10665795
    Abstract: A light emitting element includes a flexible plate-like portion having a glass substrate, and an organic functional layer formed on one surface side of the glass substrate. The organic functional layer includes a light emitting layer. When the plate-like portion is curved in a prescribed curving direction, and one surface of the plate-like portion is a concave surface, and the other surface thereof is a convex surface, a surface which is positioned on the concave surface side among both surfaces of the glass substrate is referred to as a first surface. When the plate-like portion is curved in a curving direction, and the one surface of the plate-like portion is a concave surface, and the other surface thereof is a convex surface, a compressive stress is applied to a portion whose distance from the first surface of the glass substrate is less than or equal to L (L>T/2).
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: May 26, 2020
    Assignee: PIONEER CORPORATION
    Inventor: Takeru Okada
  • Publication number: 20200152900
    Abstract: A light-emitting device (20) includes a first light-emitting member (10a) and a second light-emitting member (10b). Each of the first light-emitting member (10a) and the second light-emitting member (10b) includes a first surface (12) and a second surface (14), and light is emitted from the first surface (12). The first light-emitting member (10a) includes a first region (16a) and a second region (16b), the first region (16a) of the first light-emitting member (10a) being located on the second surface (14) side of the second light-emitting member (10b) and the second region (16b) of the first light-emitting member (10a) being located on the first surface (12) side of the second light-emitting member (10b).
    Type: Application
    Filed: May 9, 2018
    Publication date: May 14, 2020
    Applicant: PIONEER CORPORATION
    Inventors: Ayako YOSHIDA, Takashi CHUMAN, Makoto MATSUKAWA, Takeru OKADA, Chihiro HARADA, Akira HIRASAWA
  • Publication number: 20200119308
    Abstract: A light emitting device (10) includes a plurality of light emitting portions (140) and an inorganic layer (200). Each light emitting portion (140) has an anode (110), an organic layer (120), and a cathode (130). The inorganic layer (200) spreads over the plurality of light emitting portions (140), and continuously covers the plurality of light emitting portions (140). Thus, the inorganic layer (200) seals the plurality of light emitting portions (140). The organic layers (120) of the respective light emitting portions (140) are spaced apart from each other. Similarly, the cathodes (130) of the respective light emitting portions (140) are spaced apart from each other.
    Type: Application
    Filed: December 11, 2017
    Publication date: April 16, 2020
    Inventor: Takeru OKADA
  • Patent number: 10580842
    Abstract: A first electrode (110) has optical transparency, and a second electrode (130) has light reflectivity. An organic layer (120) is located between the first electrode (110) and the second electrode (130). Light-transmitting regions (a second region (104) and a third region (106)) are located between a plurality of light-emitting units (140). An insulating film (150) defines the light-emitting units (140) and includes tapers (152, 154). A sealing member (170) covers the light-emitting units (140) and the insulating film (150). A low reflection film (190) is located on the side opposite to a substrate (100) with the second electrode (130) therebetween. The low reflection film (190) covers at least one portion of the tapers (152 and 154).
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: March 3, 2020
    Assignee: PIONEER CORPORATION
    Inventor: Takeru Okada
  • Publication number: 20200052238
    Abstract: Each of a plurality of the light-emitting units (140) includes a first electrode (110), an organic layer (120), and a second electrode (130). The first electrode (110) is light-transmitting, and the second electrode (130) is light-reflective. The organic layer (120) is located between the first electrode (110) and the second electrode (130). The light-transmitting regions (104 and 106) are located between the plurality of light-emitting units (140). A sealing member (170) covers the plurality of light-emitting units (140) and the light-transmitting regions (104 and 106). The sealing member (170) is fixed directly or through an insulating layer (174) to at least one of a structure (for example, the second electrode 130) formed on a substrate (100), and the substrate (100). In addition, a haze value of the light-emitting device (10) is equal to or less than 2.0%, preferably equal to or less than 1.4%.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Takeru OKADA, Ayako YOSHIDA