Patents by Inventor Takeshi Gotanda

Takeshi Gotanda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230422531
    Abstract: Provided are a photoelectric conversion element that can generate power with high efficiency and has high durability, and a method for manufacturing the same. A photoelectric conversion element according to an embodiment includes a first electrode, an active layer having a perovskite structure containing a halogen ion, and a second electrode having light transmissivity, in which a Warburg coefficient of the active layer measured by an AC impedance spectroscopy method is specified. The element can be manufactured by applying a solution containing a precursor of the perovskite structure and then performing appropriate annealing treatment or gas blowing.
    Type: Application
    Filed: July 7, 2021
    Publication date: December 28, 2023
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Takeshi GOTANDA, Tomohiro TOBARI, Yutaka SAITA, Katsuya YAMASHITA, Kenji FUJINAGA, Miyuki SHIOKAWA
  • Publication number: 20230345743
    Abstract: Provided is a semiconductor element that can generate power with high efficiency and has high durability. A multilayer junction photoelectric conversion element according to an embodiment includes: a first electrode; a first photoactive layer including a perovskite semiconductor; a first doped layer; a tunnel insulating film; a second photoactive layer containing silicon; and a second electrode, in this order. A thickness of the tunnel insulating film is 1 nm to 15 nm, and the first doped layer contains silicon and a trivalent or pentavalent element as an impurity. The element can be manufactured by a method including forming a bottom cell including a second active layer and then forming a first photoactive layer by coating.
    Type: Application
    Filed: May 9, 2023
    Publication date: October 26, 2023
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: TAKESHI GOTANDA, TOMOHIRO TOBARI, YUTAKA SAITA
  • Publication number: 20230317377
    Abstract: Provided is a semiconductor element that can generate power with high efficiency and has high durability. A multilayer junction photoelectric conversion element according to an embodiment includes: a first electrode; a first photoactive layer including a perovskite semiconductor; a first doped layer; a second photoactive layer including silicon; a second doped layer; a passivation layer; and a second electrode in this order. The interlayer interface existing between the first photoactive layer and the adjacent layer is a substantially smooth surface, and the multilayer junction photoelectric conversion element further includes a light scattering layer that penetrate a part of the passivation layer and electrically join the second doped layer and the second electrode. The element can be manufactured by a method including forming a bottom cell including a second active layer and then forming a first photoactive layer by coating.
    Type: Application
    Filed: April 14, 2023
    Publication date: October 5, 2023
    Applicants: KABUSHIKI KAISHA TOSHIBA, Toshiba Energy Systems & Solutions Corporation
    Inventors: Takeshi GOTANDA, Tomohiro TOBARI, Yutaka SAITA
  • Publication number: 20230307560
    Abstract: The present embodiment provides a semiconductor element that can generate power with high efficiency and has high durability. A multilayer junction photoelectric conversion element according to an embodiment comrises: a first electrode; a first photoactive layer including a perovskite semiconductor; a first passivation layer; a first doped layer; a second photoactive layer containing silicon; and a second electrode, in this order. The multilayer junction photoelectric conversion element further comprises a light scattering layer including a plurality of mutually separated silicon alloy layers that penetrate a part of the passivation layer and electrically connect the first photoactive layer and the first doped layer. The element can be manufactured by a method including forming a bottom cell including a second active layer and then forming a first photoactive layer by coating.
    Type: Application
    Filed: May 15, 2023
    Publication date: September 28, 2023
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Takeshi GOTANDA, Tomohiro TOBARI, Yutaka SAITA
  • Publication number: 20230298826
    Abstract: A multilayer junction photoelectric converter and a multilayer junction photoelectric converter manufacturing method capable of preventing water from contacting a perovskite layer are provided. A multilayer junction photoelectric converter of an embodiment includes a multilayered-structure. In the multilayered-structure, a first electrode functional layer, a first photoactive layer, an intermediate functional layer, a second photoactive layer, and a second electrode functional layer are multilayered. The first photoactive layer is made of crystalline silicon. The second photoactive layer is made of a photoactive material having a perovskite crystal structure. A partial layer included in the second electrode functional layer is included in the multilayered-structure and extends on an edge surface of the multilayered-structure to cover an end portion of the second photoactive layer at the edge surface.
    Type: Application
    Filed: March 16, 2023
    Publication date: September 21, 2023
    Applicants: KABUSHIKI KAISHA TOSHIBA, Toshiba Energy Systems & Solutions Corporation
    Inventors: Takeshi GOTANDA, Tsuyoshi ASATANI, Yutaka SAITA, Tomohiro TOBARI
  • Publication number: 20230207716
    Abstract: A solar cell includes a top cell module that generates power by photoelectrically converting incident light and allows part of the incident light to pass through the top cell module, and a bottom cell module that is laminated to the top cell module and generates power by photoelectrically converting light that has passed through the top cell module, wherein the top cell module includes a plurality of top cells that are connected in series, in parallel, or in a combination of series and parallel, the bottom cell module includes a plurality of bottom cells that are connected in series, in parallel, or in a combination of series and parallel, the number of the bottom cells being equal to the number of the top cells, and an electrode connecting the plurality of top cells is positioned such that the electrode does not overlap the bottom cells in plan view.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Applicants: KABUSHIKI KAISHA TOSHIBA, Toshiba Energy Systems & Solutions Corporation
    Inventors: Miyuki SHIOKAWA, Katsuya YAMASHITA, Tomohiro TOBARI, Takeshi GOTANDA, Yutaka SAITA
  • Publication number: 20230129154
    Abstract: A solar cell module of the embodiment includes a first solar cell element and a second solar cell element disposed to be aligned, a connection member, and a shield member. The connection member electrically connects a first electrode of the first solar cell element and a second electrode of the second solar cell element. The first solar cell element and the second solar cell element each include a first cell containing a perovskite semiconductor and a second cell containing silicon. The first electrode is disposed at an end portion in a first direction in which the first cell is disposed in a thickness direction. The second electrode is disposed at an end portion in a second direction in which the second cell is disposed in the thickness direction. The shield member is made of an electrically insulating material and is disposed between an end portion of the first electrode of the first solar cell element on the second solar cell element side and the connection member.
    Type: Application
    Filed: October 24, 2022
    Publication date: April 27, 2023
    Applicants: Kabushiki Kaisha Toshiba, Toshiba Energy Systems & Solutions Corporation
    Inventors: Takeshi GOTANDA, Katsuya YAMASHITA, Haruki OHNISHI, Yutaka SAITA, Tomohiro TOBARI
  • Publication number: 20220416100
    Abstract: Embodiments provide a transparent electrode having high stability, low sheet resistance, and high light transmissivity, a method for producing the transparent electrode, and an electronic device using the transparent electrode. A transparent electrode including a structure including a transparent base material, a metal grid, metal nanowire, and a neutral polythiophene mixture. The metal grid has an embedded portion embedded in the transparent base material and a protrusion portion protruding from the transparent base material, and the metal nanowire and the neutral polythiophene mixture are arranged in contact with the transparent base material or the protrusion portion.
    Type: Application
    Filed: September 2, 2022
    Publication date: December 29, 2022
    Applicants: KABUSHIKI KAISHA TOSHIBA, Toshiba Energy Systems & Solutions Corporation
    Inventors: Katsuyuki NAITO, Naomi SHIDA, Takeshi GOTANDA, Yutaka SAITA
  • Patent number: 11410818
    Abstract: The present embodiments provide a semiconductor element comprising a first electrode, an active layer, a second electrode comprising a homogeneous metal layer, and further a barrier layer comprising a transparent metal oxide. The barrier layer is placed between the active layer and the second electrode. The present embodiments also provide a method for manufacturing said semiconductor element.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: August 9, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Takeshi Gotanda
  • Publication number: 20220140165
    Abstract: A solar battery module according to an embodiment has at least one solar battery panel, a flexible substrate and a package. A solar battery cell is formed in the at least one solar battery panel. The flexible substrate is directly or indirectly connected to the at least one solar battery panel. A bypass diode is mounted on the flexible substrate. The flexible substrate forms a bypass line of the at least one solar battery panel. The package accommodates the at least one solar battery panel. The flexible substrate has a base material and a wiring. The wiring is supported by the base material. The wiring has a flying lead and a terminal. The flying lead protrudes from the base material. The flying lead is connected to the at least one solar battery panel. The terminal is provided on an outward side of the package.
    Type: Application
    Filed: January 12, 2022
    Publication date: May 5, 2022
    Inventors: Katsuya Yamashita, Haiyan Jin, Miyuki Shiokawa, Takeshi Gotanda, Tomohiro Tobari, Yutaka Saita
  • Publication number: 20220140780
    Abstract: A flight vehicle of an embodiment includes a wing, double-side generation type solar cells, and a light reflecting part. The wing has an outer shell member. The outer shell member has transmittance. The wing is formed by an outer shell member in a hollow shape. The solar cells are disposed on the upper surface of the wing. The light reflecting part is provided on an inner surface of the outer shell member.
    Type: Application
    Filed: January 19, 2022
    Publication date: May 5, 2022
    Inventors: Haiyan Jin, Takeshi Gotanda, Yutaka Saita, Tomohiro Tobari, Katsuya Yamashita, Miyuki Shiokawa, Kenji Fujinaga
  • Patent number: 10950391
    Abstract: A method for manufacturing a photoelectric conversion device, that includes: forming a laminate structure of a substrate, a transparent electrode, an active layer produced by wet-coating, and a counter electrode, stacked in this order; and thereafter forming a cavity by: (a) pressing an adhesive material just against a defect formed on the surface of said counter electrode, and then peeling off said adhesive material together with said defect and the peripheral part thereof; or (b) sucking a defect formed on the surface of said counter electrode, so as to remove said defect and the peripheral part thereof, where said cavity penetrates through the counter electrode and unreached to the transparent electrode.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: March 16, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shigehiko Mori, Hideyuki Nakao, Takeshi Gotanda, Haruhi Oooka, Kenji Todori, Kenji Fujinaga
  • Patent number: 10950810
    Abstract: A photoelectric conversion element according to an embodiment includes: a first electrode; a second electrode; and a photoelectric conversion layer that is in contact with the first electrode and the second electrode and includes an active layer containing a perovskite compound. The active layer gives an X-ray diffraction pattern having a first diffraction peak ascribed to the (004) plane of the perovskite compound and a second diffraction peak ascribed to the (220) plane of the perovskite compound. The ratio of the maximum intensity of the first diffraction peak to the maximum intensity of the second diffraction peak is 0.18 or more.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: March 16, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takeshi Gotanda, Hyangmi Jung
  • Patent number: 10714270
    Abstract: The present embodiments provide a flexible, lightweight and highly efficient photoelectric conversion device and further provide a manufacturing method thereof. The photoelectric conversion device according to the embodiment comprises a laminate structure of a substrate, an ITO electrode, a photoelectric conversion layer and a counter electrode. When subjected to surface X-ray diffraction analysis, the ITO electrode shows an X-ray diffraction profile characterized in that the peak at a diffraction peak position in the range of 2?=30.6±0.5° has a half-width of 1.0° or less. The ITO electrode in the device can be formed by forming an amorphous-phase ITO film on the substrate and then by subjecting the film to annealing treatment at a temperature of 200° or less.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: July 14, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shigehiko Mori, Takeshi Gotanda, Haruhi Oooka, Kenji Todori
  • Patent number: 10644238
    Abstract: The embodiment provides a method and an apparatus for manufacturing a semiconductor element showing high conversion efficiency and having a perovskite structure. The embodiment is a method for manufacturing a semiconductor element comprising an active layer having a perovskite structure. Said active layer is produced by the steps of: forming a coating film by directly or indirectly coating a first or second electrode with a coating solution containing a precursor compound for the perovskite structure and an organic solvent capable of dissolving said precursor compound; and then starting to blow a gas onto said coating film before formation reaction of the perovskite structure is completed in said coating film. Another embodiment is an apparatus for manufacturing a semiconductor element according to the above method.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: May 5, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Gotanda, Shigehiko Mori, Akihiro Matsui, Haruhi Oooka
  • Patent number: 10622574
    Abstract: According to one embodiment, a photoelectric conversion element includes a photoelectric conversion layer, a first layer and an intermediate layer. The photoelectric conversion layer includes a material having a perovskite structure. The first layer includes a first substance and a second substance. The intermediate layer is provided between the photoelectric conversion layer and the first layer. A concentration of the second substance in the first layer is lower than a concentration of the first substance in the first layer.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: April 14, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takeshi Gotanda
  • Publication number: 20200091451
    Abstract: A photoelectric conversion element according to an embodiment includes: a first electrode; a second electrode; and a photoelectric conversion layer that is in contact with the first electrode and the second electrode and includes an active layer containing a perovskite compound. The active layer gives an X-ray diffraction pattern having a first diffraction peak ascribed to the (004) plane of the perovskite compound and a second diffraction peak ascribed to the (220) plane of the perovskite compound. The ratio of the maximum intensity of the first diffraction peak to the maximum intensity of the second diffraction peak is 0.18 or more.
    Type: Application
    Filed: November 21, 2019
    Publication date: March 19, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takeshi Gotanda, Hyangmi Jung
  • Publication number: 20200043672
    Abstract: A method for manufacturing a photoelectric conversion device, that includes: forming a laminate structure of a substrate, a transparent electrode, an active layer produced by wet-coating, and a counter electrode, stacked in this order; and thereafter forming a cavity by: (a) pressing an adhesive material just against a defect formed on the surface of said counter electrode, and then peeling off said adhesive material together with said defect and the peripheral part thereof; or (b) sucking a defect formed on the surface of said counter electrode, so as to remove said defect and the peripheral part thereof, where said cavity penetrates through the counter electrode and unreached to the transparent electrode.
    Type: Application
    Filed: October 11, 2019
    Publication date: February 6, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shigehiko MORI, Hideyuki NAKAO, Takeshi GOTANDA, Haruhi OOOKA, Kenji TODORI, Kenji FUJINAGA
  • Patent number: 10468616
    Abstract: A method of manufacturing a photoelectric conversion device of an embodiment includes: forming a layer on a substrate; and drying this layer. The layer contains a p-type semiconductor, an n-type semiconductor, and a compound represented by the following formula (1). The layer is dried under pressures of 100 Pa or less and substrate temperatures of 40 to 200° C.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: November 5, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Haruhi Oooka, Atsuko Iida, Hideyuki Nakao, Kenji Todori, Takeshi Gotanda
  • Patent number: 10446757
    Abstract: An solar cell of an embodiment includes a first electrode, an electron transport layer containing a metal oxide, a self-assembled monolayer, a photoelectric conversion layer including a p-type semiconductor and an n-type semiconductor, and a second electrode. The self-assembled monolayer includes a fullerene-containing compound having a fullerene portion including a fullerene or a fullerene derivative, an absorption group to the metal oxide, and a bond group bonding the fullerene portion and the absorption group. The bond group contains a bivalent aromatic hydrocarbon group and a bivalent organic group which includes a carbon atom chain having 1 to 18 single-bonded carbon(s) or an atom chain in which a part of the carbon atom chain is substituted by at least one element selected from oxygen, nitrogen, and sulfur, as a main chain.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: October 15, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hyangmi Jung, Takeshi Gotanda, Kenji Todori