Patents by Inventor Takeshi Kitagawa

Takeshi Kitagawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150060029
    Abstract: A limiter is connected to an accumulator leg near a first header collection pipe in an outdoor unit. The limiter extends from the accumulator leg toward the first header collection pipe to limit movement of the first header collection pipe.
    Type: Application
    Filed: April 23, 2013
    Publication date: March 5, 2015
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takashi Ono, Satoshi Itou, Takeshi Kitagawa
  • Patent number: 8546072
    Abstract: An object of the present invention is to provide a peptide derivative for determining ?-glucan or endotoxin which allows high sensitivity measurement, and a method for determining ?-glucan and/or endotoxin using the same.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: October 1, 2013
    Assignee: Wako Pure Chemical Industries, Ltd.
    Inventors: Takeshi Kitagawa, Naoyuki Yamamoto, Mutsuhiro Date
  • Patent number: 8104303
    Abstract: A branching unit has a refrigerant pipe that is branched into a plurality of branching refrigerant pipes, and includes an insulation material resin casing and an expanded insulation material casing. The insulation material resin casing encloses branching portion while assuring an insulation space between the insulation material resin casing and the branching portion. The expanded insulation material casing is disposed on the external periphery of the insulation material resin casing.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: January 31, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Katsunori Murata, Takeshi Kitagawa
  • Patent number: 7974502
    Abstract: An optical module controls its output characteristics electrically and an optical switch constitutes the optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: July 5, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Shinji Mino, Takeshi Kitagawa, Motohaya Ishii, Takashi Yamada, Akira Himeno, Masayuki Okuno, Shunichi Souma, Takashi Goh
  • Patent number: 7957840
    Abstract: A heat source side controller of an air conditioner has an operating mode allocator and an operating mode setter. The air conditioner has a heat source unit and a plurality of room units. The heat source unit can be switched among a plurality of operating modes having different noise-reduction levels. The operating mode allocator allocates one operating mode to each of the operating room units. The operating mode setter sets the heat source unit to one operating mode from among the plurality of operating modes on the basis of the operating modes allocated by the operating mode allocator to each of the operating room units. In cases in which a specific operating mode is allocated to all of the operating room units, the operating mode setter sets the heat source unit to the specific operating mode.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: June 7, 2011
    Assignee: Daikin Industries, Ltd.
    Inventors: Hideki Sangenya, Takeshi Kitagawa
  • Publication number: 20110108753
    Abstract: A bite type pipe connection structure is used to connect a large diameter pipe that is previously set as a standard specification. The bite type pipe connection structure includes a spacer 71 that is used for connecting a small diameter pipe P3 and serves as insertion port adjusting means for adjusting a gap between the insertion port 16 and the small diameter pipe P3, a step portion 73 serving as a step portion for small diameter that regulates the position of the tip of the small diameter pipe P3, and insertion-through hole adjusting means for bridging a gap between the insertion-through hole for large diameter of a ferrule for large diameter and the small diameter pipe P3 to adjust the insertion-through hole. The insertion-through hole adjusting means is obtained by replacing the ferrule for large diameter 3 with a ferrule for small diameter 6. This makes it possible to connect the small diameter pipe P3 with a joint main body 1 attached to an apparatus.
    Type: Application
    Filed: September 25, 2008
    Publication date: May 12, 2011
    Inventors: Haruo Nakata, Takeshi Kitagawa, Takashi Shimamura, Hiroyuki Hirata, Akira Hashimoto, Takanori Shimomachi
  • Publication number: 20100330700
    Abstract: An object of the present invention is to provide a peptide derivative for determining ?-glucan or endotoxin which allows high sensitivity measurement, and a method for determining ?-glucan and/or endotoxin using the same.
    Type: Application
    Filed: February 20, 2009
    Publication date: December 30, 2010
    Applicant: WAKO PURE CHEMICAL INDUSTRIES, LTD.
    Inventors: Takeshi Kitagawa, Naoyuki Yamamoto, Mutsuhiro Date
  • Publication number: 20100298120
    Abstract: A photocatalyst film of which at least one main surface contains photo-semiconductor particles; said main surface being a surface that becomes hydrophilic by irradiation with light, wherein the hydrophilization speed thereof when it is irradiated with light having a half-value width of 15 nm or less after kept in a dark place is less than 2 (l/deg/min/105) in an irradiated-light wavelength region of 370 nm or more and is 2 (l/deg/min/105) or more at least partly in an irradiated-light wavelength region of 300 to 360 nm.
    Type: Application
    Filed: October 16, 2008
    Publication date: November 25, 2010
    Inventors: Naoki Tanaka, Takeshi Kitagawa, Daisuke Suematsu, Kazuyuki Takami
  • Publication number: 20090138127
    Abstract: A heat source side controller of an air conditioner has an operating mode allocator and an operating mode setter. The air conditioner has a heat source unit and a plurality of room units. The heat source unit can be switched among a plurality of operating modes having different noise-reduction levels. The operating mode allocator allocates one operating mode to each of the operating room units. The operating mode setter sets the heat source unit to one operating mode from among the plurality of operating modes on the basis of the operating modes allocated by the operating mode allocator to each of the operating room units. In cases in which a specific operating mode is allocated to all of the operating room units, the operating mode setter sets the heat source unit to the specific operating mode.
    Type: Application
    Filed: March 28, 2007
    Publication date: May 28, 2009
    Inventors: Hideki Sangenya, Takeshi Kitagawa
  • Publication number: 20090049855
    Abstract: A branching unit has a refrigerant pipe that is branched into a plurality of branching refrigerant pipes, and includes an insulation material resin casing and an expanded insulation material casing. The insulation material resin casing encloses branching portion while assuring an insulation space between the insulation material resin casing and the branching portion. The expanded insulation material casing is disposed on the external periphery of the insulation material resin casing.
    Type: Application
    Filed: April 12, 2006
    Publication date: February 26, 2009
    Applicant: Daikin Industries, Ltd.
    Inventors: Katsunori Murata, Takeshi Kitagawa
  • Patent number: 7397977
    Abstract: A wave transmission medium includes an input port 3-1 and an output port 3-2. A field distribution 1 and a field distribution 2 are obtained by numerical calculations. The field distribution 1 is a field distribution of the propagation light (forward propagation light) launched into the input port 3-1. The field distribution 2 is a field distribution of the phase conjugate light (reverse propagation light) resulting from reversely transmitting from the output port side an output field that is expected to be output from the output port 3-2 when an optical signal is launched into the input port 3-1. According to the field distributions 1 and 2, a spatial refractive index distribution is calculated such that the phase difference between the propagation light and reverse propagation light is eliminated at individual points (x, z) in the medium.
    Type: Grant
    Filed: December 25, 2003
    Date of Patent: July 8, 2008
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Toshikazu Hashimoto, Ikuo Ogawa, Takeshi Kitagawa, Senichi Suzuki, Masahiro Yanagisawa, Tomohiro Shibata, Masaki Koutoku, Hiroshi Takahashi, Ryou Nagase, Masaru Kobayashi, Shuichiro Asakawa, Yoshiteru Abe, Tsutomu Kitoh, Takaharu Ohyama
  • Publication number: 20070154137
    Abstract: An optical module controls its output characteristics electrically and an optical switch constitutes the optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
    Type: Application
    Filed: February 23, 2007
    Publication date: July 5, 2007
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Shinji Mino, Takeshi Kitagawa, Motohaya Ishii, Takashi Yamada, Akira Himeno, Masayuki Okuno, Shunichi Souma, Takashi Goh
  • Patent number: 7206473
    Abstract: An optical module controls its output characteristics electrically and an optical switch constitutes the optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: April 17, 2007
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Shinji Mino, Takeshi Kitagawa, Motohaya Ishii, Takashi Yamada, Akira Himeno, Masayuki Okuno, Shunichi Souma, Takashi Goh
  • Patent number: 7177495
    Abstract: An optical module controls its output characteristics electrically and an optical switch constitutes the optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: February 13, 2007
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Shinji Mino, Takeshi Kitagawa, Motohaya Ishii, Takashi Yamada, Akira Himeno, Masayuki Okuno, Shunichi Souma, Takashi Goh
  • Patent number: 7116859
    Abstract: An optical module controls its output characteristics electrically and an optical switch constitutes an optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: October 3, 2006
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Shinji Mino, Takeshi Kitagawa, Motohaya Ishii, Takashi Yamada, Akira Himeno, Masayuki Okuno, Shunichi Souma, Takashi Goh
  • Publication number: 20060126992
    Abstract: A wave transmission medium includes an input port 3-1 and an output port 3-2. A field distribution 1 and a field distribution 2 are obtained by numerical calculations. The field distribution 1 is a field distribution of the propagation light (forward propagation light) launched into the input port 3-1. The field distribution 2 is a field distribution of the phase conjugate light (reverse propagation light) resulting from reversely transmitting from the output port side an output field that is expected to be output from the output port 3-2 when an optical signal is launched into the input port 3-1. According to the field distributions 1 and 2, a spatial refractive index distribution is calculated such that the phase difference between the propagation light and reverse propagation light is eliminated at individual points (x, z) in the medium.
    Type: Application
    Filed: December 25, 2003
    Publication date: June 15, 2006
    Inventors: Toshikazu Hashimoto, Ikuo Ogawa, Takeshi Kitagawa, Senichi Suzuki, Masahiro Yanagisawa, Tomohiro Shibata, Masaki Koutoku, Hiroshi Takahashi, Ryou Nagase, Masaru Kobayashi, Shuichiro Asakawa, Yoshiteru Abe, Tsutomu Kitoh, Takaharu Ohyama
  • Publication number: 20060034565
    Abstract: An optical module controls its output characteristics electrically and an optical switch constitutes the optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
    Type: Application
    Filed: October 26, 2005
    Publication date: February 16, 2006
    Inventors: Shinji Mino, Takeshi Kitagawa, Motohaya Ishii, Takashi Yamada, Akira Himeno, Masayuki Okuno, Shunichi Souma, Takashi Goh
  • Publication number: 20060034563
    Abstract: An optical module controls its output characteristics electrically and an optical switch constitutes the optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
    Type: Application
    Filed: October 26, 2005
    Publication date: February 16, 2006
    Inventors: Shinji Mino, Takeshi Kitagawa, Motohaya Ishii, Takashi Yamada, Akira Himeno, Masayuki Okuno, Shunichi Souma, Takashi Goh
  • Publication number: 20060034564
    Abstract: An optical module controls its output characteristics electrically and an optical switch constitutes the optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
    Type: Application
    Filed: October 26, 2005
    Publication date: February 16, 2006
    Inventors: Shinji Mino, Takeshi Kitagawa, Motohaya Ishii, Takashi Yamada, Akira Himeno, Masayuki Okuno, Shunichi Souma, Takashi Goh
  • Patent number: 6999652
    Abstract: An optical module controls its output characteristics electrically and an optical switch constitutes the optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: February 14, 2006
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Shinji Mino, Takeshi Kitagawa, Motohaya Ishii, Takashi Yamada, Akira Himeno, Masayuki Okuno, Shunichi Souma, Takashi Goh