Patents by Inventor Takeshi Morino

Takeshi Morino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11629988
    Abstract: A flow sensor includes a semiconductor, an electric control circuit, a lead frame, and a spacer. The spacer is disposed in a clearance between the lead frame and the semiconductor device on an opposite side from a joint portion of the semiconductor device with the lead frame on a side of the electric control circuit across the diaphragm disposed therebetween. A surface of the electric control circuit and a part of a surface of the semiconductor device is covered with resin while the air flow sensing unit is exposed. At the joint portion, the semiconductor device is attached to the lead frame via an adhesive.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: April 18, 2023
    Assignee: Hitachi Astemo, Ltd.
    Inventors: Tsutomu Kono, Yuuki Okamoto, Takeshi Morino, Keiji Hanzawa
  • Patent number: 11593930
    Abstract: An inspection apparatus including an image generation device which generates a second image corresponding to a first image, and a defect detection device which detects a defect in the second image. Each of the first and second image includes partial regions each including pixels. The defect detection device is configured to estimate a first value indicating a position difference between the first and second image for each of the partial regions, based on a luminance difference between the first and second image, estimate a second value indicating a reliability of the first value for each of the partial regions, and estimate a position difference between the first and second image for each of the pixels, based on the first and second value estimated for each of the partial regions.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: February 28, 2023
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Okano, Takeshi Morino, Yoshinori Honguh
  • Publication number: 20210256676
    Abstract: An inspection apparatus including an image generation device which generates a second image corresponding to a first image, and a defect detection device which detects a defect in the second image. Each of the first and second image includes partial regions each including pixels. The defect detection device is configured to estimate a first value indicating a position difference between the first and second image for each of the partial regions, based on a luminance difference between the first and second image, estimate a second value indicating a reliability of the first value for each of the partial regions, and estimate a position difference between the first and second image for each of the pixels, based on the first and second value estimated for each of the partial regions.
    Type: Application
    Filed: August 31, 2020
    Publication date: August 19, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hideaki OKANO, Takeshi MORINO, Yoshinori HONGUH
  • Patent number: 10997713
    Abstract: According to one embodiment, an inspection device includes: an image generation device configured to generate a second image corresponding to a first image; and a defect detection device configured to estimate a nonlinear shift based on a plurality of partial region sets, each of the partial region sets including a first partial region in the first image and a second partial region in the second image corresponding to the first partial region, and detect a defect in the second image from the first image.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: May 4, 2021
    Assignees: KABUSHIKI KAISHA TOSHIBA, NuFlare Technology, Inc.
    Inventors: Takeshi Morino, Hideaki Okano, Yoshinori Honguh, Ryoichi Hirano, Masataka Shiratsuchi, Hideaki Hashimoto
  • Publication number: 20210108953
    Abstract: A flow sensor includes a semiconductor, an electric control circuit, a lead frame, and a spacer. The spacer is disposed in a clearance between the lead frame and the semiconductor device on an opposite side from a joint portion of the semiconductor device with the lead frame on a side of the electric control circuit across the diaphragm disposed therebetween. A surface of the electric control circuit and a part of a surface of the semiconductor device is covered with resin while the air flow sensing unit is exposed. At the joint portion, the semiconductor device is attached to the lead frame via an adhesive.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Tsutomu Kono, Yuuki Okamoto, Takeshi Morino, Keiji Hanzawa
  • Patent number: 10935403
    Abstract: The present invention has been made to improve measurement accuracy of a thermal flow meter. In the thermal flow meter according to the invention, a circuit package (400) that measures a flow rate is molded in a first resin molding process. In a second resin molding process, a housing (302) having an inlet trench (351), a bypass passage trench on frontside (332), an outlet trench (353), and the like are formed through resin molding, and an outer circumferential surface of the circuit package (400) produced in the first resin molding process is enveloped by a resin in the second resin molding process to fix the circuit package (400) to the housing (302).
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: March 2, 2021
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Noboru Tokuyasu, Shinobu Tashiro, Keiji Hanzawa, Takeshi Morino, Ryosuke Doi, Akira Uenodan
  • Patent number: 10935213
    Abstract: According to one embodiment, an illumination device includes a plurality of light emitting elements and a plurality of reflectors. The plurality of reflectors include at least one first reflector and at least one second reflector. The first reflector is provided corresponding to the first region at the center and is provided so that the corresponding light emitting element is positioned within a focal region in the vicinity of a focal point. The second reflector is provided corresponding to the second region, has an angular eccentricity so as to collect light on one region on the optical axis, and is provided so as to be positioned within a margin region in which one of the corresponding light emitting elements is provided at a position farther away than a second focal region in the vicinity of the focal point.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: March 2, 2021
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Takeshi Morino, Hiroshi Ohno
  • Patent number: 10928231
    Abstract: The present invention addresses the problem of obtaining a thermal flow meter capable of reducing a pulsation error by preventing a discharge port and a main outlet from being blocked by a vortex during a transient period and reducing a difference between flow speed distributions in normal and pulsation states. This thermal flow meter is provided with a housing disposed in a main passage; and a sub passage provided in the housing. In addition, in the housing, a first outlet and a second outlet of the sub passage are disposed in a downstream end portion of the housing, and a curved surface section is provided adjacent to the first and second outlets.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: February 23, 2021
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Takeshi Morino, Shinobu Tashiro, Akira Uenodan, Tomoaki Saito, Masashi Fukaya
  • Patent number: 10921169
    Abstract: A flow sensor structure seals the surface of an electric control circuit and part of a semiconductor device via a manufacturing method that prevents occurrence of flash or chip crack when clamping the semiconductor device via a mold. The flow sensor structure includes a semiconductor device having an air flow sensing unit and a diaphragm, and a board or lead frame having an electric control circuit for controlling the semiconductor device, wherein a surface of the electric control circuit and part of a surface of the semiconductor device is covered with resin while having the air flow sensing unit portion exposed. The flow sensor structure may include surfaces of a resin mold, a board or a pre-mold component surrounding the semiconductor device that are continuously not in contact with three walls of the semiconductor device orthogonal to a side on which the air flow sensing unit portion is disposed.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: February 16, 2021
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Tsutomu Kono, Yuuki Okamoto, Takeshi Morino, Keiji Hanzawa
  • Patent number: 10775215
    Abstract: To obtain a flow meter with which it is possible to facilitate establishing an electrical connection with a conductor exposed in a location through which a gas to be measured passes. A flow meter that is provided with a lead and a circuit component placed on the lead, and that has a package in which part of the lead is molded from a resin, wherein the package is provided with an exposure portion for exposing part of the lead from the resin member, the exposure portion being electrically connected to a conductor that constitutes part of an auxiliary passage.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: September 15, 2020
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Akira Uenodan, Shinobu Tashiro, Takeshi Morino, Masatoshi Ogata, Tsubasa Watanabe, Norio Ishitsuka
  • Publication number: 20200240822
    Abstract: The present invention has been made to improve measurement accuracy of a thermal flow meter. In the thermal flow meter according to the invention, a circuit package (400) that measures a flow rate is molded in a first resin molding process. In a second resin molding process, a housing (302) having an inlet trench (351), a bypass passage trench on frontside (332), an outlet trench (353), and the like are formed through resin molding, and an outer circumferential surface of the circuit package (400) produced in the first resin molding process is enveloped by a resin in the second resin molding process to fix the circuit package (400) to the housing (302).
    Type: Application
    Filed: April 15, 2020
    Publication date: July 30, 2020
    Inventors: Noboru TOKUYASU, Shinobu TASHIRO, Keiji HANZAWA, Takeshi MORINO, Ryosuke DOI, Akira UENODAN
  • Patent number: 10670440
    Abstract: In order to provide a flow measuring device high in thermal responsiveness, the flow measuring device includes a temperature detecting element 2 for temperature detection, and a conductive metal lead frame 3 that supports and fixes the temperature detecting element. Of the metal lead frame, a part of the metal lead frame mounted with the temperature detecting element has a portion which is thinner than the thickness of the other metal lead frame or narrower than the width of the other metal lead frame.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: June 2, 2020
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Shinobu Tashiro, Keiji Hanzawa, Noboru Tokuyasu, Takeshi Morino, Ryosuke Doi
  • Patent number: 10655993
    Abstract: The present invention has been made to improve measurement accuracy of a thermal flow meter. In the thermal flow meter according to the invention, a circuit package (400) that measures a flow rate is molded in a first resin molding process. In a second resin molding process, a housing (302) having an inlet trench (351), a bypass passage trench on frontside (332), an outlet trench (353), and the like are formed through resin molding, and an outer circumferential surface of the circuit package (400) produced in the first resin molding process is enveloped by a resin in the second resin molding process to fix the circuit package (400) to the housing (302).
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: May 19, 2020
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Noboru Tokuyasu, Shinobu Tashiro, Keiji Hanzawa, Takeshi Morino, Ryosuke Doi, Akira Uenodan
  • Patent number: 10520343
    Abstract: The present invention provides a thermal flowmeter having good measurement accuracy by reducing deviation in the flow velocity distribution of a gas under measurement flowing through an auxiliary passage. An auxiliary passage 330 for taking in a portion of a gas under measurement IA flowing through a main passage 124 has a curved passage 32a that bends toward a flowrate measurement element 602. The curved passage 32a has a resistance portion 50 formed therein that applies resistance to the flow of the gas under measurement IA flowing through the outer peripheral side CO of the curved passage 32a so that the pressure loss of the gas under measurement IA flowing through the outer peripheral side CO is high compared to that of the gas flowing through the inner peripheral side CI of the curved passage 32a.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: December 31, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Takeshi Morino, Shinobu Tashiro, Masashi Fukaya, Atsushi Inoue, Masanobu Ino, Naoki Saito
  • Patent number: 10514287
    Abstract: A thermal flowmeter circuit package having a side of a measurement surface 430 of the circuit package and a flow path 387 at a side of the backside of measurement surface 431 of a rear surface of the measurement surface 430, and an inflow-side end surface of the circuit package for dividing the measurement target gas 30 has different shapes at the side of the measurement surface and at the side of the backside of measurement surface. The inflow-side end surface of the circuit package for dividing the measurement target gas 30 is formed with a reference line 700 dividing the measurement target gas 30, and an end surface 701a at the side of the measurement surface with respect to the reference line and an end surface 701b at the side of the backside of measurement surface with respect to the reference line are formed to be asymmetrical.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: December 24, 2019
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Shinobu Tashiro, Keiji Hanzawa, Noboru Tokuyasu, Takeshi Morino, Ryosuke Doi, Akira Uenodan
  • Publication number: 20190338916
    Abstract: According to one embodiment, an illumination device includes a plurality of light emitting elements and a plurality of reflectors. The plurality of reflectors include at least one first reflector and at least one second reflector. The first reflector is provided corresponding to the first region at the center and is provided so that the corresponding light emitting element is positioned within a focal region in the vicinity of a focal point. The second reflector is provided corresponding to the second region, has an angular eccentricity so as to collect light on one region on the optical axis, and is provided so as to be positioned within a margin region in which one of the corresponding light emitting elements is provided at a position farther away than a second focal region in the vicinity of the focal point.
    Type: Application
    Filed: July 18, 2019
    Publication date: November 7, 2019
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Takeshi MORINO, Hiroshi OHNO
  • Patent number: 10458827
    Abstract: A thermal type air flow meter, capable of suppressing deformation of a base member at the time of molding to secure dimensional accuracy and reduce an influence of a dimension change on measuring accuracy, is to be placed in an intake passage of an internal combustion engine. The thermal type of air flow meter includes a resin component having a secondary passage into which part of the air passing through the intake passage can flow, and a circuit board configured to output a signal according to an air flow rate based on a signal from a flow rate detecting element disposed on the circuit board. The circuit board on which the flow rate detecting element is disposed is installed so that the flow rate detecting element is placed in the secondary passage.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: October 29, 2019
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Takeshi Morino, Chihiro Kobayashi, Yuki Okamoto, Tsutomu Kono
  • Publication number: 20190279349
    Abstract: According to one embodiment, an inspection device includes: an image generation device configured to generate a second image corresponding to a first image; and a defect detection device configured to estimate a nonlinear shift based on a plurality of partial region sets, each of the partial region sets including a first partial region in the first image and a second partial region in the second image corresponding to the first partial region, and detect a defect in the second image from the first image.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 12, 2019
    Applicants: KABUSHIKI KAISHA TOSHIBA, NUFlare Technology, Inc.
    Inventors: Takeshi MORINO, Hideaki OKANO, Yoshinori HONGUH, Ryoichi HIRANO, Masataka SHIRATSUCHI, Hideaki HASHIMOTO
  • Patent number: 10345131
    Abstract: A thermal-type flowmeter includes a chip package. The chip package is formed through encapsulation with a resin of a sensor element, a drive circuit, a metal lead frame adapted to have mounted thereon the sensor element and the drive circuit, and a temperature detecting element. The chip package has an exposed structure in which a surface of the sensor element having the diaphragm is exposed. The temperature detecting element is mounted on the lead frame via an electrically conductive member.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: July 9, 2019
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Noboru Tokuyasu, Shinobu Tashiro, Keiji Hanzawa, Takeshi Morino, Ryosuke Doi
  • Patent number: 10345128
    Abstract: Provided is a thermal flow meter to improve the measurement accuracy of a temperature detector. The thermal flow meter includes a bypass passage through which a measurement target gas flowing through a main passage flows, and a circuit package which includes a measurement circuit for measuring a flow rate of the measurement target gas flowing through the bypass passage and a temperature detecting portion for detecting a temperature of the measurement target gas. The circuit package includes a circuit package body which is molded by a resin to internally envelope the measurement circuit and a protrusion molded by the resin. The temperature detecting portion is provided in the leading end portion of the protrusion, and at least the leading end portion of the protrusion protrudes to the outside from a housing.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: July 9, 2019
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Shinobu Tashiro, Keiji Hanzawa, Noboru Tokuyasu, Takeshi Morino, Ryosuke Doi, Akira Uenodan