Patents by Inventor Taketo Ueno

Taketo Ueno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10228332
    Abstract: A defect inspection method includes irradiating a sample with laser, condensing and detecting scattered light beams, processing signals that detectors have detected and extracting a defect on a sample surface, and outputting information on the extracted defect. Detection of the scattered light beams is performed by condensing the scattered light beams, adjusting polarization directions of the condensed scattered light beams, mutually separating the light beams depending on the polarization direction, and detecting the light beams by a plurality of detectors. Extraction of the defect is performed by processing output signals from the detectors by multiplying each detection signal by a gain, discriminating between a noise and the defect, and detecting the defect.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: March 12, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshifumi Honda, Yuta Urano, Shunichi Matsumoto, Taketo Ueno, Yuko Otani
  • Patent number: 9683946
    Abstract: The present invention is suppressing the elongating phenomenon in the dark field image of defects in detecting a minute defect by using a dark field microscope. Provided is a method for detecting defects in which scattered light generated from the sample, is concentrated to form an image and is captured and processed to extract a defect to find the positional information of the defect, and the positional information is output, wherein an image of the scattered light that suppresses the occurrence of the elongating phenomenon is formed for which partial shielding of a component of the forward scattered light, that passes through a region near the outer edge of the field of view of the objective lens, and the positional information for the defect is found from a luminance signal for a defect that is extracted from a captured scattered light image that suppresses the occurrence of the elongating phenomenon.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: June 20, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuko Otani, Taketo Ueno, Hideki Nakayama, Toshifumi Honda
  • Publication number: 20170146463
    Abstract: A defect inspection method includes irradiating a sample with laser, condensing and detecting scattered light beams, processing signals that detectors have detected and extracting a defect on a sample surface, and outputting information on the extracted defect. Detection of the scattered light beams is performed by condensing the scattered light beams, adjusting polarization directions of the condensed scattered light beams, mutually separating the light beams depending on the polarization direction, and detecting the light beams by a plurality of detectors. Extraction of the defect is performed by processing output signals from the detectors by multiplying each detection signal by a gain, discriminating between a noise and the defect, and detecting the defect.
    Type: Application
    Filed: January 22, 2015
    Publication date: May 25, 2017
    Inventors: Toshifumi HONDA, Yuta URANO, Shunichi MATSUMOTO, Taketo UENO, Yuko OTANI
  • Patent number: 9588055
    Abstract: A defect inspection apparatus includes: a seed light generator including a pulse signal generator that generates a pulse signal and a polarization modulator that outputs pulse light of any one of two polarization states orthogonal to each other in synchronization with the pulse signal output from the pulse signal generator; a wavelength converting unit including a branching mechanism that branches the pulse light output by the polarization modulator of the seed light generator using polarization and a converting unit that wavelength-converts the pulse light branched by the branching mechanism into beams of two different wavelengths, respectively; an illumination optical system that illuminates a surface of an inspected target material with the beams of the two different wavelengths converted by the wavelength converting unit; a detection optical system including a detecting unit that detects light generated by the beams of the two different wavelengths illuminated by the illumination optical system; and a sig
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: March 7, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuta Urano, Taketo Ueno, Akira Hamamatsu, Toshifumi Honda
  • Patent number: 9535013
    Abstract: In inspecting a substrate having a transparent oxide film or a metal film formed on a surface thereof by using a dark field type inspection apparatus installing a laser light source, an illuminating beam having a high coherence causes variations in reflection strength due to multiple interferences within the transparent oxide film or an interference of scattered beams due to the surface roughness of the metal film occurs and which leads to degradation in the sensitivity of defect detection. The present invention solves the problem by providing a low-coherence but high-brightness illumination using a highly directive broadband light source, and a system in which the conventional laser light source is simultaneously employed to selectively use the light sources, thereby enabling a highly sensitive inspection according to the condition of a wafer.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: January 3, 2017
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Shunichi Matsumoto, Taketo Ueno, Atsushi Taniguchi
  • Patent number: 9255793
    Abstract: A defect inspection device includes an irradiation unit for simultaneously irradiating different regions on a sample with illumination light under different optical conditions, the sample being predesigned to include patterns repeatedly formed thereupon, wherein the patterns are to be formed in the same shape; a detection unit for detecting, for each of the different regions, a beam of light reflected from each region irradiated with the illumination light; a defect candidate extraction unit for extracting defect candidates under the different optical conditions for each of the different regions, by processing detection signals corresponding to the reflected light which is detected; a defect extraction unit for extracting defects by integrating the defect candidates extracted under the different optical conditions; and a defect classifying unit for calculating feature quantities of the extracted defects and classifies the defects according to the calculated feature quantities.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: February 9, 2016
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yukihiro Shibata, Toshifumi Honda, Taketo Ueno, Atsushi Taniguchi
  • Patent number: 9182592
    Abstract: An optical filtering device and an optical inspection apparatus for detecting a defect in a high sensitivity using an optical filtering device which includes a shutter array formed in a two-dimensionally on an optically opaque thin film produced on a SOI wafer and the SOI wafer is removed at portions thereof on the lower side of the shutter patterns to form perforation portions while working electrodes are formed at the remaining portion of the SOI wafer, a glass substrate having electrode patterns formed on the surface thereof and having the shutter array mounted thereon, and a power supply section for supplying electric power to the electrode patterns formed on the glass substrate and the working electrodes of the SOI wafer. And the working electrodes is controlled to cause the shutter patterns to carry out opening and closing movements with respect to the perforation portions to carry out optical filtering.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: November 10, 2015
    Assignees: HITACHI, LTD., THE UNIVERSITY OF TOKYO
    Inventors: Taketo Ueno, Toshihiko Nakata, Yukihiro Shibata, Shun'ichi Matsumoto, Atsushi Taniguchi, Hiroshi Toshiyoshi, Takuya Takahashi, Kentaro Motohara
  • Publication number: 20150276622
    Abstract: The present invention is suppressing the elongating phenomenon in the dark field image of defects in detecting a minute defect by using a dark field microscope. Provided is a method for detecting defects in which scattered light generated from the sample, is concentrated to form an image and is captured and processed to extract a defect to find the positional information of the defect, and the positional information is output, wherein an image of the scattered light that suppresses the occurrence of the elongating phenomenon is formed for which partial shielding of a component of the forward scattered light, that passes through a region near the outer edge of the field of view of the objective lens, and the positional information for the defect is found from a luminance signal for a defect that is extracted from a captured scattered light image that suppresses the occurrence of the elongating phenomenon.
    Type: Application
    Filed: November 5, 2013
    Publication date: October 1, 2015
    Inventors: Yuko Otani, Taketo Ueno, Hideki Nakayama, Toshifumi Honda
  • Patent number: 9019492
    Abstract: To prevent overlooking of a defect due to reduction in a defect signal, a defect inspection device is configured such that: light is irradiated onto an object to be inspected on which a pattern is formed; reflected, diffracted, and scattered light generated from the object by the irradiation of the light is collected, such that a first optical image resulting from the light passed through a first spatial filter having a first shading pattern is received by a first detector, whereby a first image is obtained; the reflected, diffracted, and scattered light generated from the object is collected, such that a second optical image resulting from the light passed through a second spatial filter having a second shading pattern is received by a second detector, whereby a second image is obtained; and the first and second images thus obtained are processed integrally to detect a defect candidate(s).
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: April 28, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Atsushi Taniguchi, Taketo Ueno, Shunichi Matsumoto, Toshifumi Honda
  • Publication number: 20150062581
    Abstract: A defect inspection apparatus includes: a seed light generator including a pulse signal generator that generates a pulse signal and a polarization modulator that outputs pulse light of any one of two polarization states orthogonal to each other in synchronization with the pulse signal output from the pulse signal generator; a wavelength converting unit including a branching mechanism that branches the pulse light output by the polarization modulator of the seed light generator using polarization and a converting unit that wavelength-converts the pulse light branched by the branching mechanism into beams of two different wavelengths, respectively; an illumination optical system that illuminates a surface of an inspected target material with the beams of the two different wavelengths converted by the wavelength converting unit; a detection optical system including a detecting unit that detects light generated by the beams of the two different wavelengths illuminated by the illumination optical system; and a sig
    Type: Application
    Filed: July 15, 2014
    Publication date: March 5, 2015
    Inventors: Yuta Urano, Taketo Ueno, Akira Hamamatsu, Toshifumi Honda
  • Patent number: 8970836
    Abstract: An invention being applied is a defect detecting apparatus that has: an illuminating optical system with a laser light source for irradiating a sample on whose surface a pattern is formed with light; a detecting optical system with a sensor for detecting light generated from the sample illuminated by the illuminating optical system; and a signal processing unit that extracts a defect from an image based on the light detected by the detecting optical system, in which an amplification rate of the sensor is dynamically changed during a time when the light is detected by the detecting optical system.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: March 3, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Atsushi Taniguchi, Taketo Ueno, Shunichi Matsumoto, Yukihiro Shibata, Toshifumi Honda
  • Patent number: 8885037
    Abstract: To effectively utilize the polarization property of an inspection subject for obtaining higher inspection sensitivity, for the polarization of lighting, it is necessary to observe differences in the reflection, diffraction, and scattered light from the inspection subject because of polarization by applying light having the same elevation angle and wavelength in the same direction but different polarization. According to conventional techniques, a plurality of measurements by changing polarizations is required to cause a prolonged inspection time period that is an important specification of inspection apparatuses.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: November 11, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Atsushi Taniguchi, Yukihiro Shibata, Taketo Ueno, Toshihiko Nakata
  • Patent number: 8830465
    Abstract: A defect inspecting apparatus includes an irradiation optical system having a light source that emits illumination light and a polarization generation part that adjusts polarization state of the illumination light emitted from the light source, a detection optical system having a polarization analysis part that adjusts polarization state of scattered light from a sample irradiated by the irradiation optical system and a detection part that detects the scattered light adjusted by the polarization analysis part, and a signal processing system that processes the scattered light detected by the detection optical system to detect a defect presenting in the sample. The polarization generation part adjusts the polarization state of the illumination light emitted from the light source on the basis of predetermined illumination conditions and the polarization analysis part adjusts the polarization state of the illumination light emitted from the light source on the basis of predetermined detection conditions.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: September 9, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Atsushi Taniguchi, Yukihiro Shibata, Taketo Ueno, Shunichi Matsumoto
  • Publication number: 20140233024
    Abstract: An invention being applied is a defect detecting apparatus that has: an illuminating optical system with a laser light source for irradiating a sample on whose surface a pattern is formed with light; a detecting optical system with a sensor for detecting light generated from the sample illuminated by the illuminating optical system; and a signal processing unit that extracts a defect from an image based on the light detected by the detecting optical system, in which an amplification rate of the sensor is dynamically changed during a time when the light is detected by the detecting optical system.
    Type: Application
    Filed: May 14, 2012
    Publication date: August 21, 2014
    Applicant: Hitachi High-Techmologies Corporation
    Inventors: Atsushi Taniguchi, Taketo Ueno, Shunichi Matsumoto, Yukihiro Shibata, Toshifumi Honda
  • Patent number: 8804112
    Abstract: A method of inspecting defects and a device inspecting defects of detecting defects at high sensitivity and high capture efficiency even on various patterns existing on a wafer. In the device of inspecting defects, an illumination optical system is formed of two systems of a coherent illumination of a laser 5 and an incoherent illumination of LEDs 6a, 6b, 6c and 6d, and light paths are divided in a detecting system corresponding to respective illumination light, spatial modulation elements 55a and 55b are arranged to detecting light paths, respectively, scattered light inhibiting sensitivity is shielded by the spatial modulating elements 55a and 55b, scattered light transmitted through the spatial modulation elements 55a and 55b is detected by image sensors 90a and 90b arranged to respective light paths, and images detected by these two image sensors 90a and 90b are subjected to a comparison processing, thereby determining a defect candidate.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: August 12, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yukihiro Shibata, Toshihiko Nakata, Taketo Ueno, Atsushi Taniguchi, Toshifumi Honda
  • Publication number: 20140160471
    Abstract: An optical filtering device and an optical inspection apparatus for detecting a defect in a high sensitivity using an optical filtering device which includes a shutter array formed in a two-dimensionally on an optically opaque thin film produced on a SOI wafer and the SOI wafer is removed at portions thereof on the lower side of the shutter patterns to form perforation portions while working electrodes are formed at the remaining portion of the SOI wafer, a glass substrate having electrode patterns formed on the surface thereof and having the shutter array mounted thereon, and a power supply section for supplying electric power to the electrode patterns formed on the glass substrate and the working electrodes of the SOI wafer. And the working electrodes is controlled to cause the shutter patterns to carry out opening and closing movements with respect to the perforation portions to carry out optical filtering.
    Type: Application
    Filed: February 3, 2012
    Publication date: June 12, 2014
    Inventors: Taketo Ueno, Toshihiko Nakata, Yukihiro Shibata, Shun'ichi Matsumoto, Atsushi Taniguchi, Hiroshi Toshiyoshi, Takuya Takahashi, Kentaro Motohara
  • Patent number: 8681328
    Abstract: By including an illumination system and a detection system, an information collecting function of monitoring an environment, such as temperature and atmospheric pressure, and an apparatus state managing function having a feedback function of comparing the monitoring result and a design value, a theoretical calculation value or an ideal value derived from simulation results and calibrating an apparatus so that the monitoring result is brought close to the ideal value, a unit for keeping the apparatus state and apparatus sensitivity constant is provided. A control unit 800 is configured to include a recording unit 801, a comparing unit 802, a sensitivity predicting unit 803, and a feedback control unit 804. In the comparing unit 802, the monitoring result transmitted from the recording unit 801 and an ideal value stored in a database 805 are compared with each other.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: March 25, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Atsushi Taniguchi, Taketo Ueno, Yukihiro Shibata, Shunji Maeda, Tetsuya Matsui
  • Patent number: 8660336
    Abstract: A defect inspection system is disclosed for easily setting inspection conditions and providing an inspection condition and a defect signal intensity to an operator. The defect inspection system digitizes a defective image, and a reference image corresponding thereto and a mismatched portion of the defective image and the reference image as a defect signal intensity and accumulates them in association with the inspection condition. The inspection conditions are changed to repeat evaluations while repeating accumulating works until the evaluation of all the inspection conditions in a set range is completed. A recipe file including the accumulated conditions having the high defect signal intensity and an inspection condition item distribution as a inspection condition recipe is automatically outputted and provided to the operator.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: February 25, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Taketo Ueno, Yasuhiro Yoshitake
  • Publication number: 20130242294
    Abstract: To prevent overlooking of a defect due to reduction in a defect signal, a defect inspection device is configured such that: light is irradiated onto an object to be inspected on which a pattern is formed; reflected, diffracted, and scattered light generated from the object by the irradiation of the light is collected, such that a first optical image resulting from the light passed through a first spatial filter having a first shading pattern is received by a first detector, whereby a first image is obtained; the reflected, diffracted, and scattered light generated from the object is collected, such that a second optical image resulting from the light passed through a second spatial filter having a second shading pattern is received by a second detector, whereby a second image is obtained; and the first and second images thus obtained are processed integrally to detect a defect candidate(s).
    Type: Application
    Filed: November 10, 2011
    Publication date: September 19, 2013
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Atsushi Taniguchi, Taketo Ueno, Shunichi Matsumoto, Toshifumi Honda
  • Publication number: 20130188184
    Abstract: A defect inspecting apparatus includes an irradiation optical system having a light source that emits illumination light and a polarization generation part that adjusts polarization state of the illumination light emitted from the light source, a detection optical system having a polarization analysis part that adjusts polarization state of scattered light from a sample irradiated by the irradiation optical system and a detection part that detects the scattered light adjusted by the polarization analysis part, and a signal processing system that processes the scattered light detected by the detection optical system to detect a defect presenting in the sample. The polarization generation part adjusts the polarization state of the illumination light emitted from the light source on the basis of predetermined illumination conditions and the polarization analysis part adjusts the polarization state of the illumination light emitted from the light source on the basis of predetermined detection conditions.
    Type: Application
    Filed: June 17, 2011
    Publication date: July 25, 2013
    Inventors: Atsushi Taniguchi, Yukihiro Shibata, Taketo Ueno, Shunichi Matsumoto