Patents by Inventor Takeyoshi Ohashi

Takeyoshi Ohashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230411111
    Abstract: The present disclosure makes it possible to shorten the time required for measurement of a sample and to measure the sample with high throughput. A charged particle beam apparatus includes a storage device that stores a correction value table corresponding to a recipe and a computer system that executes measurement on a plurality of measurement points of a sample according to a measurement order determined in the recipe. The computer system stores, when executing the recipe on a first sample, an adjustment result of one or more imaging conditions in the correction value table at each of a plurality of measurement points of the first sample, and adjusts, when executing the recipe on a second sample different from the first sample, the imaging condition based on the adjustment result of the one or more imaging conditions stored in the correction value table at each of the plurality of measurement points.
    Type: Application
    Filed: May 2, 2023
    Publication date: December 21, 2023
    Inventors: Tetsuro KADOWAKI, Takeyoshi OHASHI, Takuma YAMAMOTO
  • Patent number: 11670479
    Abstract: When focus adjustment is performed according to the height of the surface of a sample at each inspection point in order to continuously inspect a plurality of inspection points on a wafer by using an electron microscope, even when the focus adjustment by an electrostatic lens in which a variation of heights of inspection points is greater than a predetermined range, and that can perform adjustment at a high speed and adjustment by an electromagnetic lens with a low speed are required to be used together, a flow of focus adjustment in which the number of times of the adjustment by the electromagnetic lens is reduced by using a relation of changes of heights at inspection points, an inspection order, and a range in which an electrostatic focus can be performed is realized, so that inspection with high throughput is made possible.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: June 6, 2023
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Takeyoshi Ohashi, Hyejin Kim, Yusuke Abe, Kenji Tanimoto
  • Publication number: 20220351938
    Abstract: An object of the invention is to acquire a high-quality image while maintaining an improvement in throughput of image acquisition (measurement (length measurement)). The present disclosure provides a charged particle beam system including a charged particle beam device and a computer system configured to control the charged particle beam device. The charged particle beam device includes an objective lens, a sample stage, and a backscattered electron detector that is disposed between the objective lens and the sample stage and that adjusts a focus of a charged particle beam with which a sample is irradiated. The computer system adjusts a value of an electric field on the sample in accordance with a change in a voltage applied to the backscattered electron detector.
    Type: Application
    Filed: March 23, 2022
    Publication date: November 3, 2022
    Inventors: Yusuke NAKAMURA, Yusuke ABE, Kenji TANIMOTO, Takeyoshi OHASHI
  • Patent number: 11430106
    Abstract: An object of the invention is to quantitatively evaluate crystal growth amount in a wide range from an undergrowth state to an overgrowth state with nondestructive inspection. By using a plenty of image feature values such as pattern brightness, a pattern area and a pattern shape which are extracted from an SEM image, and depending on whether brightness inside a pattern is lower than brightness outside the pattern (401), undergrowth and overgrowth is determined (402, 405). Based on a brightness difference or the pattern area, a growth amount index or a normality index of crystal growth in a concave pattern such as a hole pattern or a trench pattern is calculated (404, 407).
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: August 30, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Takeyoshi Ohashi, Atsuko Shintani, Masami Ikota, Kazuhisa Hasumi
  • Patent number: 11276554
    Abstract: A scanning electron microscope includes an electron-optical system including an electron source and an objective lens, a stage on which a sample is placed, a secondary electron detector disposed adjacent to the electron source relative to the objective lens and configured to detect secondary electrons, a backscattered electron detector disposed between the objective lens and the stage and configured to detect backscattered electrons, a backscattered electron detection system controller configured to apply a voltage to the backscattered electron detector, and a device-control computer configured to detect a state of an electrical charge carried by the backscattered electron detector based on signal intensity at the secondary electron detector when the primary electrons are applied to the sample with a predetermined voltage applied to the backscattered electron detector.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: March 15, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Takeyoshi Ohashi, Yusuke Abe, Kenji Tanimoto, Kaori Bizen, Hyejin Kim
  • Publication number: 20210384006
    Abstract: When focus adjustment is performed according to the height of the surface of a sample at each inspection point in order to continuously inspect a plurality of inspection points on a wafer by using an electron microscope, even when the focus adjustment by an electrostatic lens in which a variation of heights of inspection points is greater than a predetermined range, and that can perform adjustment at a high speed and adjustment by an electromagnetic lens with a low speed are required to be used together, a flow of focus adjustment in which the number of times of the adjustment by the electromagnetic lens is reduced by using a relation of changes of heights at inspection points, an inspection order, and a range in which an electrostatic focus can be performed is realized, so that inspection with high throughput is made possible.
    Type: Application
    Filed: June 3, 2021
    Publication date: December 9, 2021
    Inventors: Takeyoshi Ohashi, Hyejin Kim, Yusuke Abe, Kenji Tanimoto
  • Patent number: 10943762
    Abstract: An inspection system is provided that includes a microscope that scans a sample with a beam that is an incident electron beam, and an image processing device that controls the microscope.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: March 9, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Takeyoshi Ohashi, Masami Ikota
  • Publication number: 20210043420
    Abstract: A scanning electron microscope includes an electron-optical system including an electron source and an objective lens, a stage on which a sample is placed, a secondary electron detector disposed adjacent to the electron source relative to the objective lens and configured to detect secondary electrons, a backscattered electron detector disposed between the objective lens and the stage and configured to detect backscattered electrons, a backscattered electron detection system controller configured to apply a voltage to the backscattered electron detector, and a device-control computer configured to detect a state of an electrical charge carried by the backscattered electron detector based on signal intensity at the secondary electron detector when the primary electrons are applied to the sample with a predetermined voltage applied to the backscattered electron detector.
    Type: Application
    Filed: July 29, 2020
    Publication date: February 11, 2021
    Inventors: Takeyoshi Ohashi, Yusuke Abe, Kenji Tanimoto, Kaori Bizen, Hyejin Kim
  • Patent number: 10727024
    Abstract: A charged particle beam device using a multi-pole type aberration corrector includes: a charged particle source which generates a primary charged particle beam; an aberration correction optical system which corrects aberrations of the primary charged particle beam; a detection unit which detects a secondary charged particle generated from a sample irradiated with the primary charged particle beam whose aberrations have been corrected; an image forming unit which forms a charged particle image of the sample from a signal obtained by detecting the secondary charged particle; an aberration correction amount calculation unit which processes the charged particle image, separates aberrations having different symmetries, selects an aberration to be preferentially corrected from the separated aberrations, and calculates a correction amount of the aberration correction optical system; and an aberration correction optical system control unit which controls the aberration correction optical system based on the calculate
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: July 28, 2020
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kotoko Urano, Zhaohui Cheng, Takeyoshi Ohashi, Hideyuki Kazumi
  • Publication number: 20200219243
    Abstract: An object of the invention is to quantitatively evaluate crystal growth amount in a wide range from an undergrowth state to an overgrowth state with nondestructive inspection. By using a plenty of image feature values such as pattern brightness, a pattern area and a pattern shape which are extracted from an SEM image, and depending on whether brightness inside a pattern is lower than brightness outside the pattern (401), undergrowth and overgrowth is determined (402, 405). Based on a brightness difference or the pattern area, a growth amount index or a normality index of crystal growth in a concave pattern such as a hole pattern or a trench pattern is calculated (404, 407).
    Type: Application
    Filed: August 23, 2017
    Publication date: July 9, 2020
    Inventors: Takeyoshi OHASHI, Atsuko SHINTANI, Masami IKOTA, Kazuhisa HASUMI
  • Patent number: 10446361
    Abstract: In order to provide an aberration correction system that realizes a charged particle beam of which the anisotropy is reduced or eliminated on a sample surface even in the case where there is magnetic interference between pole stages of an aberration corrector, an correction system includes a line cross position control device (209) which controls a line cross position in the aberration corrector of the charged particle beam so that a designed value and an actually measured value of the line cross position are equal to each other, an image shift amount extraction device (210), and a feedback determination device (211) which determines whether or not changing an excitation amount of the aberration corrector is necessary whether or not changing an excitation amount is necessary from an extracted image shift amount.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: October 15, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Zhaohui Cheng, Tomonori Nakano, Kotoko Urano, Takeyoshi Ohashi, Yasunari Sohda, Hideyuki Kazumi
  • Publication number: 20190244783
    Abstract: An inspection system is provided that includes a microscope that scans a sample with a beam that is an incident electron beam, and an image processing device that controls the microscope.
    Type: Application
    Filed: January 30, 2019
    Publication date: August 8, 2019
    Inventors: Takeyoshi OHASHI, Masami IKOTA
  • Publication number: 20190214222
    Abstract: A charged particle beam device using a multi-pole type aberration corrector includes: a charged particle source which generates a primary charged particle beam; an aberration correction optical system which corrects aberrations of the primary charged particle beam; a detection unit which detects a secondary charged particle generated from a sample irradiated with the primary charged particle beam whose aberrations have been corrected; an image forming unit which forms a charged particle image of the sample from a signal obtained by detecting the secondary charged particle; an aberration correction amount calculation unit which processes the charged particle image, separates aberrations having different symmetries, selects an aberration to be preferentially corrected from the separated aberrations, and calculates a correction amount of the aberration correction optical system; and an aberration correction optical system control unit which controls the aberration correction optical system based on the calculate
    Type: Application
    Filed: August 23, 2016
    Publication date: July 11, 2019
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Kotoko URANO, Zhaohui CHENG, Takeyoshi OHASHI, Hideyuki KAZUMI
  • Patent number: 10134558
    Abstract: A scanning electron microscope according to the present invention includes: an electron source that produces an electron beam; a trajectory dispersion unit that disperses the trajectory of an electron beam of electrons with a different energy value; a selection slit plate having a selection slit that selects the energy range of the dispersed electron beam; and a transmittance monitoring unit that monitors the transmittance of an electron beam, which is being transmitted through the selection slit. Accordingly, there can be provided a scanning electron microscope equipped with an energy filter that implements a stable reduction in energy distribution.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: November 20, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yasunari Sohda, Takeyoshi Ohashi, Takafumi Miwa, Noritsugu Takahashi, Hajime Kawano
  • Publication number: 20180190469
    Abstract: In order to provide an aberration correction system that realizes a charged particle beam of which the anisotropy is reduced or eliminated on a sample surface even in the case where there is magnetic interference between pole stages of an aberration corrector, an correction system includes a line cross position control device (209) which controls a line cross position in the aberration corrector of the charged particle beam so that a designed value and an actually measured value of the line cross position are equal to each other, an image shift amount extraction device (210), and a feedback determination device (211) which determines whether or not changing an excitation amount of the aberration corrector is necessary whether or not changing an excitation amount is necessary from an extracted image shift amount.
    Type: Application
    Filed: July 1, 2015
    Publication date: July 5, 2018
    Inventors: Zhaohui CHENG, Tomonori NAKANO, Kotoko URANO, Takeyoshi OHASHI, Yasunari SOHDA, Hideyuki KAZUMI
  • Patent number: 9830524
    Abstract: In the present invention, at the time of measuring, using a CD-SEM, a length of a resist that shrinks when irradiated with an electron beam, in order to highly accurately estimate a shape and dimensions of the resist before shrink, a shrink database with respect to various patterns is previously prepared, said shrink database containing cross-sectional shape data obtained prior to electron beam irradiation, a cross-sectional shape data group and a CD-SEM image data group, which are obtained under various electron beam irradiation conditions, and models based on such data and data groups, and a CD-SEM image of a resist pattern to be measured is obtained (S102), then, the CD-SEM image and data in the shrink database are compared with each other (S103), and the shape and dimensions of the pattern before the shrink are estimated and outputted (S104).
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: November 28, 2017
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Tomoko Sekiguchi, Takeyoshi Ohashi, Junichi Tanaka, Zhaohui Cheng, Ruriko Tsuneta, Hiroki Kawada, Seiko Hitomi
  • Publication number: 20170018394
    Abstract: A scanning electron microscope according to the present invention includes: an electron source that produces an electron beam; a trajectory dispersion unit that disperses the trajectory of an electron beam of electrons with a different energy value; a selection slit plate having a selection slit that selects the energy range of the dispersed electron beam; and a transmittance monitoring unit that monitors the transmittance of an electron beam, which is being transmitted through the selection slit. Accordingly, there can be provided a scanning electron microscope equipped with an energy filter that implements a stable reduction in energy distribution.
    Type: Application
    Filed: February 4, 2015
    Publication date: January 19, 2017
    Inventors: Yasunari SOHDA, Takeyoshi OHASHI, Takafumi MIWA, Noritsugu TAKAHASHI, Hajime KAWANO
  • Patent number: 9543053
    Abstract: To improve the efficiency of generation of chromatic aberrations of an energy filter for reducing energy distribution. Mounted are an energy filter for primary electrons, the energy filter having a beam slit and a pair of a magnetic deflector and an electrostatic deflector that are superimposed with each other. An electron lens is arranged between the beam slit and the pair of the magnetic deflector and the electrostatic deflector.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: January 10, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yasunari Sohda, Takeyoshi Ohashi, Takafumi Miwa, Hajime Kawano
  • Patent number: 9536170
    Abstract: An error of an outline point due to a brightness fluctuation cannot be corrected by a simple method such as a method of adding a certain amount of offset. However, in recent years as the miniaturization of the pattern represented by a resist pattern has progressed, it has been difficult to appropriately determine a region that serves as a reference. An outline of the resist pattern is extracted from an image of the resist pattern obtained by a charged particle beam apparatus in consideration of influence of the brightness fluctuation. That is, a plurality of brightness profiles in the vicinity of edge points configuring the outline are obtained and an evaluation value of a shape of the brightness profile in the vicinity of a specific edge is obtained based on the plurality of brightness profiles, and the outline of a specific edge point is corrected, based on the evaluation value.
    Type: Grant
    Filed: May 27, 2013
    Date of Patent: January 3, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takeyoshi Ohashi, Junichi Tanaka, Yutaka Hojo, Hiroyuki Shindo, Hiroki Kawada
  • Patent number: 9443695
    Abstract: This charged-particle beam device changes conditions for combining an intensity ratio between upper and lower deflectors and rotation angles of the deflectors in multiple ways when obtaining images having different pixel sizes in the vertical and horizontal directions. Then, the charged-particle beam device determines an optimal intensity ratio between the upper and lower deflectors and rotation angles of the deflectors on the basis of variations in size value measured in the larger pixel size direction (Y-direction) of the image. As a result, it is possible to extend the field of view in the Y-direction while reducing deflection aberrations when measuring at high precision in the X-direction.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: September 13, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takeyoshi Ohashi, Yasunari Sohda, Noritsugu Takahashi, Hajime Kawano, Osamu Komuro