Patents by Inventor Taku Murase

Taku Murase has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958301
    Abstract: A printing apparatus includes a printing unit configured to print an image on a print medium, an acquiring unit configured to acquire temperature information of the printing unit, and a control unit configured to control the printing unit so as to start relative scanning in a case where a temperature that is indicated by the temperature information has reached a print permission temperature. The print permission temperature in a first print mode whose speed at a time of a constant speed in relative scanning is a first speed is a first temperature. The print permission temperature in a second print mode whose speed at the time of the constant speed is a second speed that is faster than the first speed is a second temperature that is lower than the first temperature.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: April 16, 2024
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takeshi Murase, Kazuhiko Sato, Taku Yokozawa, Noboru Kunimine, Hiroshi Taira, Hiroshi Kawafuji, Sae Mogi, Akiko Aichi
  • Patent number: 11919321
    Abstract: A printing apparatus includes a printing unit configured to print an image on a print medium, an acquiring unit configured to acquire temperature information of the printing unit, and a control unit configured to control the printing unit so as to start relative scanning in a case where a temperature that is indicated by the temperature information has reached a print permission temperature. The print permission temperature in a first print mode whose speed at a time of a constant speed in relative scanning is a first speed is a first temperature. The print permission temperature in a second print mode whose speed at the time of the constant speed is a second speed that is faster than the first speed is a second temperature that is lower than the first temperature.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: March 5, 2024
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takeshi Murase, Kazuhiko Sato, Taku Yokozawa, Noboru Kunimine, Hiroshi Taira, Hiroshi Kawafuji, Sae Mogi, Akiko Aichi
  • Patent number: 11456096
    Abstract: There is provided a ferrite sintered magnet having a high residual magnetic flux density. A ferrite sintered magnet 2 includes a plurality of main phase particles 5 including ferrite having a hexagonal structure, the number of core-shell structured particles 5A having a core 7 and a shell 9 covering the core 7, among the main phase particles 5, is smaller than the number of the main phase particles 5 other than the core-shell structured particles 5A.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: September 27, 2022
    Assignee: TDK Corporation
    Inventors: Hiroyuki Morita, Masanori Ikeda, Yoshitaka Murakawa, Taku Murase
  • Patent number: 11404207
    Abstract: A method for manufacturing an R-T-B permanent magnet comprises a diffusion step of adhering a diffusing material to the surface of a magnet base material and heating the magnet base material with the diffusing material adhered thereto, wherein the magnet base material comprises rare-earth elements R, transition metal elements T and boron B; at least some of R are Nd; at least some of T are Fe; the diffusing material comprises a first component, a second component and a third component; the first component is at least one of a simple substance of Tb and a simple substance of Dy; the second component comprises a metal comprising at least one of Nd and Pr and not comprising Tb and Dy; and the third component is at least one selected from the group consisting of a simple substance of Cu, an alloy comprising Cu, and a compound of Cu.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: August 2, 2022
    Assignee: TDK Corporation
    Inventors: Taeko Tsubokura, Takeshi Masuda, Taku Murase
  • Patent number: 11380466
    Abstract: The present invention provides a ferrite sintered magnet comprising (1) main phase grains containing a ferrite having a hexagonal structure, (2) two-grain boundaries formed between two of the main phase grains, and (3) multi-grain boundaries surrounded by three or more of the main phase grains. The above ferrite sintered magnet comprises Ca, R, Sr, Fe and Co, with R being at least one element selected from the group consisting of rare earth elements and Bi, and comprising at least La. The number Nm of the above main phase grains and the number Ng of the above multi-grain boundaries in the cross section including the direction of the easy magnetization axis of the above ferrite sintered magnet satisfy the formula (1A): 50%?Nm/(Nm+Ng)?65%??(1A).
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: July 5, 2022
    Assignee: TDK Corporation
    Inventors: Hiroyuki Morita, Masanori Ikeda, Yoshitaka Murakawa, Hiroyuki Ono, Taku Murase
  • Patent number: 11244777
    Abstract: An R-T-B permanent magnet comprises rare-earth elements R, transition metal elements T, and boron B; wherein at least some of the rare-earth elements R is Nd and at least one of Tb and Dy; at least some of the transition metal elements T are Fe; the R-T-B permanent magnet comprises a plurality of main phase grains and grain boundary triple points each surrounded by the main phase grains; the grain boundary triple points comprise at least one of Nd and Pr, at least one of Tb and Dy, at least one of Fe and Co, and copper; the average contents of Nd, Pr, Tb, Dy, Fe, Co and Cu each (unit: atom %) are represented by [Nd], [Pr], [Tb], [Dy], [Fe], [Co] and [Cu]; ([Fe]+[Co])/([Nd]+[Pr]) is 2 or more and 5 or less; and [Cu]/([Tb]+[Dy]) is 1 or more and 4 or less.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: February 8, 2022
    Assignee: TDK Corporation
    Inventors: Takeshi Masuda, Taeko Tsubokura, Taku Murase
  • Publication number: 20200176155
    Abstract: An R-T-B permanent magnet comprises rare-earth elements R, transition metal elements T, and boron B; wherein at least some of the rare-earth elements R is Nd and at least one of Tb and Dy; at least some of the transition metal elements T are Fe; the R-T-B permanent magnet comprises a plurality of main phase grains and grain boundary triple points each surrounded by the main phase grains; the grain boundary triple points comprise at least one of Nd and Pr, at least one of Tb and Dy, at least one of Fe and Co, and copper; the average contents of Nd, Pr, Tb, Dy, Fe, Co and Cu each (unit: atom %) are represented by [Nd], [Pr], [Tb], [Dy], [Fe], [Co] and [Cu]; ([Fe]+[Co])/([Nd]+[Pr]) is 2 or more and 5 or less; and [Cu]/([Tb]+[Dy]) is 1 or more and 4 or less.
    Type: Application
    Filed: November 27, 2019
    Publication date: June 4, 2020
    Applicant: TDK Corporation
    Inventors: Takeshi MASUDA, Taeko TSUBOKURA, Taku MURASE
  • Publication number: 20200176184
    Abstract: A method for manufacturing an R-T-B permanent magnet comprises a diffusion step of adhering a diffusing material to the surface of a magnet base material and heating the magnet base material with the diffusing material adhered thereto, wherein the magnet base material comprises rare-earth elements R, transition metal elements T and boron B; at least some of R are Nd; at least some of T are Fe; the diffusing material comprises a first component, a second component and a third component; the first component is at least one of a simple substance of Tb and a simple substance of Dy; the second component comprises a metal comprising at least one of Nd and Pr and not comprising Tb and Dy; and the third component is at least one selected from the group consisting of a simple substance of Cu, an alloy comprising Cu, and a compound of Cu.
    Type: Application
    Filed: November 27, 2019
    Publication date: June 4, 2020
    Applicant: TDK Corporation
    Inventors: Taeko TSUBOKURA, Takeshi Masuda, Taku Murase
  • Publication number: 20190304643
    Abstract: The present invention provides a ferrite sintered magnet comprising (1) main phase grains containing a ferrite having a hexagonal structure, (2) two-grain boundaries formed between two of the main phase grains, and (3) multi-grain boundaries surrounded by three or more of the main phase grains. The above ferrite sintered magnet comprises Ca, R, Sr, Fe and Co, with R being at least one element selected from the group consisting of rare earth elements and Bi, and comprising at least La. The number Nm of the above main phase grains and the number Ng of the above multi-grain boundaries in the cross section including the direction of the easy magnetization axis of the above ferrite sintered magnet satisfy the formula (1A): 50%?Nm/(Nm+Ng)?65%??(1A).
    Type: Application
    Filed: March 7, 2019
    Publication date: October 3, 2019
    Applicant: TDK Corporation
    Inventors: Hiroyuki MORITA, Masanori IKEDA, Yoshitaka MURAKAWA, Hiroyuki ONO, Taku MURASE
  • Publication number: 20190304642
    Abstract: A ferrite sintered magnet comprising ferrite particles having a hexagonal structure is provided. The ferrite sintered magnet comprises metallic elements at an atomic ratio represented by formula (1). In formula (1), R is at least one element selected from the group consisting of rare-earth elements and Bi, and comprises at least La. In formula (1), w, x, z and m satisfy formulae (2) to (5). The above-mentioned ferrite sintered magnet comprises 0.037 to 0.181% by mass of B in terms of H3BO3. Ca1?w?xRwSrxFezCom ??(1) 0.360?w?0.420 ??(2) 0.110?x?0.173 ??(3) 8.51?z?9.71 ??(4) 0.208?m?0.
    Type: Application
    Filed: February 7, 2019
    Publication date: October 3, 2019
    Applicant: TDK Corporation
    Inventors: Masanori IKEDA, Hiroyuki MORITA, Yoshitaka MURAKAWA, Taku MURASE
  • Publication number: 20190304641
    Abstract: There is provided a ferrite sintered magnet having a high residual magnetic flux density. A ferrite sintered magnet 2 includes a plurality of main phase particles 5 including ferrite having a hexagonal structure, the number of core-shell structured particles 5A having a core 7 and a shell 9 covering the core 7, among the main phase particles 5, is smaller than the number of the main phase particles 5 other than the core-shell structured particles 5A.
    Type: Application
    Filed: February 5, 2019
    Publication date: October 3, 2019
    Applicant: TDK Corporation
    Inventors: Hiroyuki MORITA, Masanori IKEDA, Yoshitaka MURAKAWA, Taku MURASE
  • Patent number: 7713433
    Abstract: W-type ferrite has improved magnetic properties, in particular, coercive force. A high coercive force (HcJ) and a high residual magnetic flux density (Br) can be simultaneously attained by a ferrite magnetic material comprising an oxide having a composition wherein metal elements Sr, Ba and Fe in total have a composition ratio represented by the formula Sr(1?x)BaxFe2+aFe3+b in which 0.03 ?x?0.80, 1.1?a?2.4, and 12.3?b?16.1. The ferrite magnetic material can form any of a ferrite sintered magnet, a ferrite magnet powder, a bonded magnet as a ferrite magnet powder dispersed in a resin, and a magnetic recording medium as a film-type magnetic phase. As for the ferrite sintered magnet, there can be attained a fine sintered structure that has a mean grain size of 0.6 ?m or less.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: May 11, 2010
    Assignee: TDK Corporation
    Inventors: Yoshihiko Minachi, Noboru Ito, Junichi Nagaoka, Shunsuke Kurasawa, Taku Murase
  • Patent number: 7541305
    Abstract: A dielectric ceramic composition having a main ingredient including a dielectric oxide expressed by the formula {(Me1-xCax)O}m.(Zr1-yTiy)O2, where the symbol Me indicating the name of the element in said formula is at least one of Sr, Mg, and Ba and where the symbols m, x, and y indicating the molar ratios of the formulation in the formula are in relationships of 0.995?m?1.020, 0<x?0.15, and 0?y?1.00, a first sub ingredient including an oxide of R (where R is a rare earth element), a second sub ingredient including an oxide of Mg, and a third sub ingredient including an oxide of Mn, wherein the ratios of the sub ingredients with respect to 100 moles of the main ingredient are first sub ingredient: 0.1 to 6 moles (value converted to oxide of R), second sub ingredient: 0.1 to 5 moles (value converted to oxide of Mg), and third sub ingredient: 0.1 to 2.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: June 2, 2009
    Assignee: TDK Corporation
    Inventors: Kazushige Ito, Akira Sato, Taku Murase
  • Patent number: 7481947
    Abstract: A ferrite magnetic material comprising a main phase of W-type is provided which has magnetic properties improved through the optimization of additives. The ferrite magnetic material comprises a main constituent having a compound represented by composition formula AFe2+aFe3+bO27 (wherein A comprises at least one element selected from Sr, Ba and Pb; 1.5?a?2.1; and 12.9?b?16.3), a first additive containing a Ca constituent (0.3 to 3.0 wt % in terms of CaCO3) and/or a Si constituent (0.2 to 1.4 wt % in terms of SiO2), and a second additive containing at least one of an Al constituent (0.01 to 1.5 wt % in terms of Al2O3), a W constituent (0.01 to 0.6 wt % in terms of WO3), a Ce constituent (0.001 to 0.6 wt % in terms of CeO2), a Mo constituent (0.001 to 0.16 wt % in terms of MoO3), and a Ga constituent (0.001 to 15 wt % in terms of Ga2O3).
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: January 27, 2009
    Assignee: TDK Corporation
    Inventors: Yoshihiko Minachi, Junichi Nagaoka, Shunsuke Kurasawa, Noboru Ito, Taku Murase, Takeshi Masuda, Kenya Takagawa, Hidenobu Umeda
  • Patent number: 7481946
    Abstract: The present invention provides a production method of a ferrite material comprising as main constituents Fe2O3: 62 to 68 mol %, ZnO: 12 to 20 mol %, and MnO substantially constituting the balance, wherein the method comprises a compacting step for obtaining a compacted body by using a powder containing the main constituents, the powder having a specific surface area falling within a range between 2.5 and 5.0 m2/g and a 90% particle size of 10 ?m or less, and a sintering step for sintering the compacted body obtained in the compacting step. Accordingly, the saturation magnetic flux density of the Mn—Zn based ferrite can be improved.
    Type: Grant
    Filed: December 26, 2003
    Date of Patent: January 27, 2009
    Assignee: TDK Corporation
    Inventors: Kenya Takagawa, Eiichiro Fukuchi, Taku Murase
  • Publication number: 20080292876
    Abstract: There is provided a soft magnetic member comprising a resin film 11 and a soft magnetic layer formed on the resin film 11, the soft magnetic layer comprising a T-L composition layer 7, wherein T is Fe or FeCO, and L is at least one element selected from the group consisting of C, B and N, and a Co based amorphous alloy layer 3 formed on either of the surfaces of the T-L composition layer 7. The Co based amorphous alloy layer 3 is combined with the T-L composition layer 7 to give a magnetic thin film for high frequency simultaneously exhibiting a high permeability and a high saturated magnetization. The magnetic thin film for high frequency can be formed on the resin film 11 because the magnetic thin film can exhibit excellent properties without a high-temperature heat treatment.
    Type: Application
    Filed: December 16, 2003
    Publication date: November 27, 2008
    Inventors: Kyung-Ku Choi, Taku Murase
  • Publication number: 20080292538
    Abstract: There is provided a process for producing W-type ferrite having high magnetic properties by reducing compacting defects during wet compacting. Specifically, there is a provided a process for producing a ferrite sintered body having a main composition of the following formula (1): AFe2+aFe3+bO27 . . . (1) wherein 1.5?a?2.1, 14?a+b?18.
    Type: Application
    Filed: January 18, 2005
    Publication date: November 27, 2008
    Applicant: TDK CORPORATION
    Inventors: Yoshihiko Minachi, Junichi Nagaoka, Taku Murase, Noburo Ito, Shunsuke Kurasawa, Hidenobu Umeda
  • Patent number: 7369027
    Abstract: A high frequency magnetic thin film characterized by comprising a first layer made of a T-L composition (here, T is Fe or FeCo, and L is one or more of C, B, and N) and a second layer comprising a Co-based amorphous alloy arranged on either of the surfaces of the first layer. The high frequency magnetic thin film is a multilayer film of a plurality of the first layers and a plurality of the second layers or desirably is a multilayer film of alternately laminated first and second layers. The high frequency magnetic thin film of the present invention exhibits the properties such that the real part (??) of the complex permeability is 400 or more at 1 GHz, a quality factor Q (Q=??/??) is 4 or more, and a saturation magnetization is 14 kG (1.4 T) or more.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: May 6, 2008
    Assignee: TDK Corporation
    Inventors: Kyung-Ku Choi, Taku Murase, Yohtaro Yamazaki
  • Patent number: 7294284
    Abstract: The present invention provides a Mn—Zn ferrite which is low in the loss in the frequency range between a few 10 kHz and a few 100 kHz and high in the saturation magnetic flux density in the vicinity of 100° C. The present invention comprising the steps of compacting a powder having a specific surface area (based on the BET method) of 2.0 to 5.0 m2/g and a 50% particle size of 0.7 to 2.0 ?m into a compacted body having a predetermined shape and obtaining a sintered body by sintering the compacted body. It is preferable that a Mn—Zn ferrite comprises, as main constituents, 54 to 57 mol % of Fe2O3, 5 to 10 mol % of ZnO, 4 mol % or less (not inclusive of 0%) of NiO, and the balance substantially being MnO.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: November 13, 2007
    Assignee: TDK Corporation
    Inventors: Eiichiro Fukuchi, Akira Kakinuma, Kenya Takagawa, Fumitaka Baba, Taku Murase
  • Patent number: 7289010
    Abstract: There is provided a Mn—Zn based ferrite member excellent in mass productivity, high in withstand voltage, low in loss and excellent in direct current superposition property. The Mn—Zn based ferrite member is provided with a surface layer portion having the properties that ?5 defined in the specification satisfies the relation that ?5?103 ?m and ?50 defined in the specification satisfies the relation that ?50?102 ?m.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: October 30, 2007
    Assignee: TDK Corporation
    Inventors: Takashi Kajino, Kenya Takagawa, Taku Murase, Takuya Aoki