Patents by Inventor Takuji Okumura
Takuji Okumura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11586169Abstract: A production management device, such as a production management computer, determines a production sequence of plural types of substrates in order to produce the substrates consecutively on a product type-by-type basis by using a component mounter including component supply devices. The production management device includes a main control unit for determining a production sequence of substrates such that, where a time from start to completion of off-line setup of all the component supply devices to be used for a single product type of substrate is defined as an off-line setup time, a sum of the off-line setup times for two product types of substrates to be consecutively produced is balanced over an entire period of consecutive production.Type: GrantFiled: May 18, 2017Date of Patent: February 21, 2023Assignee: YAMAHA HATSUDOKI KABUSHIKI KAISHAInventors: Takuji Hatakeyama, Yoshiki Okumura
-
Patent number: 10934962Abstract: An abnormality diagnosis device of an in-cylinder pressure sensor is provided. The device carries out a performance determination in which a performance quality of the sensor is determined based on an electric signal inputted from the sensor. The device carries out a first determination in which the performance determination is performed at a given timing, a performance recovery in which a given deposit removal control is executed in which a deposit accumulating inside the combustion chamber is removed when the performance quality of the in-cylinder pressure sensor is determined to fall below a given reference value, and a second determination in which the performance determination is carried out again after the performance recovery. In the second determination, the in-cylinder pressure sensor is diagnosed as abnormal when the performance quality of the sensor is determined to fall below the given reference value.Type: GrantFiled: October 25, 2019Date of Patent: March 2, 2021Assignee: Mazda Motor CorporationInventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
-
Patent number: 10876488Abstract: A failure diagnosis device for an in-cylinder pressure sensor is provided, which includes an in-cylinder pressure sensor, and an engine controller comprised of circuitry configured to execute a diagnosis module into which a signal of the sensor is inputted, to diagnose a failure of the sensor based on the signal. The diagnosis module includes a reading module configured to read the signal of the sensor within a specific crank angle range, a reference phase determining module configured to determine a reference phase that is a phase of a pressure change accompanying a volume change of the combustion chamber, and a failure determining module configured to determine that the sensor has failed, when the failure determining module determines a phase of the read signal of the sensor is delayed by an amount exceeding a predefined threshold from the determined reference phase.Type: GrantFiled: July 2, 2019Date of Patent: December 29, 2020Assignee: Mazda Motor CorporationInventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
-
Patent number: 10815917Abstract: A failure diagnosis system for an in-cylinder pressure sensor is provided, which includes an in-cylinder pressure sensor, a fuel injection valve, an engine controller including an engine control module and a diagnosis module. The engine control module controls the fuel injection valve to stop the supply of fuel to the engine, when a fuel cut condition is satisfied while the automobile travels. The diagnosis module includes a limiting module configured to limit an execution of the failure diagnosis of the in-cylinder pressure sensor until the diagnosis module determines that a given period has lapsed after the stop of fuel supply to the engine. The diagnosis module reads a signal of the in-cylinder pressure sensor when the given period has lapsed after the stop of the fuel supply to the engine, and diagnoses the failure of the in-cylinder pressure sensor based on the read signal of the in-cylinder pressure sensor.Type: GrantFiled: July 2, 2019Date of Patent: October 27, 2020Assignee: Mazda Motor CorporationInventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
-
Patent number: 10767592Abstract: A failure diagnosis device for an in-cylinder pressure sensor includes an in-cylinder pressure sensor, and a controller comprised of circuitry configured to execute a diagnosis module into which a signal of the in-cylinder pressure sensor is inputted and configured to diagnose a failure of the sensor based on the signal. The diagnosis module includes a reading module configured to read the signals of the in-cylinder pressure sensor at a first timing that is a timing retarded by a specific crank angle from a compression top dead center, and at a second timing that is a timing advanced by the specific crank angle from the compression top dead center, and a failure determining module configured to determine that the in-cylinder pressure sensor has failed when the failure determining module determines that a difference between signal values at the first timing and at the second timing exceeds a predefined threshold.Type: GrantFiled: July 2, 2019Date of Patent: September 8, 2020Assignee: Mazda Motor CorporationInventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
-
Publication number: 20200200112Abstract: An abnormality diagnosis device of an in-cylinder pressure sensor is provided. The device carries out a performance determination in which a performance quality of the sensor is determined based on an electric signal inputted from the sensor. The device carries out a first determination in which the performance determination is performed at a given timing, a performance recovery in which a given deposit removal control is executed in which a deposit accumulating inside the combustion chamber is removed when the performance quality of the in-cylinder pressure sensor is determined to fall below a given reference value, and a second determination in which the performance determination is carried out again after the performance recovery. In the second determination, the in-cylinder pressure sensor is diagnosed as abnormal when the performance quality of the sensor is determined to fall below the given reference value.Type: ApplicationFiled: October 25, 2019Publication date: June 25, 2020Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
-
Publication number: 20200072150Abstract: A failure diagnosis device for an in-cylinder pressure sensor includes an in-cylinder pressure sensor, and a controller comprised of circuitry configured to execute a diagnosis module into which a signal of the in-cylinder pressure sensor is inputted and configured to diagnose a failure of the sensor based on the signal. The diagnosis module includes a reading module configured to read the signals of the in-cylinder pressure sensor at a first timing that is a timing retarded by a specific crank angle from a compression top dead center, and at a second timing that is a timing advanced by the specific crank angle from the compression top dead center, and a failure determining module configured to determine that the in-cylinder pressure sensor has failed when the failure determining module determines that a difference between signal values at the first timing and at the second timing exceeds a predefined threshold.Type: ApplicationFiled: July 2, 2019Publication date: March 5, 2020Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
-
Publication number: 20200072149Abstract: A failure diagnosis device for an in-cylinder pressure sensor is provided, which includes an in-cylinder pressure sensor, and an engine controller comprised of circuitry configured to execute a diagnosis module into which a signal of the sensor is inputted, to diagnose a failure of the sensor based on the signal. The diagnosis module includes a reading module configured to read the signal of the sensor within a specific crank angle range, a reference phase determining module configured to determine a reference phase that is a phase of a pressure change accompanying a volume change of the combustion chamber, and a failure determining module configured to determine that the sensor has failed, when the failure determining module determines a phase of the read signal of the sensor is delayed by an amount exceeding a predefined threshold from the determined reference phase.Type: ApplicationFiled: July 2, 2019Publication date: March 5, 2020Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
-
Publication number: 20200072148Abstract: A failure diagnosis system for an in-cylinder pressure sensor is provided, which includes an in-cylinder pressure sensor, a fuel injection valve, an engine controller including an engine control module and a diagnosis module. The engine control module controls the fuel injection valve to stop the supply of fuel to the engine, when a fuel cut condition is satisfied while the automobile travels. The diagnosis module includes a limiting module configured to limit an execution of the failure diagnosis of the in-cylinder pressure sensor until the diagnosis module determines that a given period has lapsed after the stop of fuel supply to the engine. The diagnosis module reads a signal of the in-cylinder pressure sensor when the given period has lapsed after the stop of the fuel supply to the engine, and diagnoses the failure of the in-cylinder pressure sensor based on the read signal of the in-cylinder pressure sensor.Type: ApplicationFiled: July 2, 2019Publication date: March 5, 2020Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
-
Patent number: 10480479Abstract: A control device for an engine in which partial compression-ignition combustion including SI combustion performed by forcibly combusting a portion of mixture gas inside a cylinder followed by CI combustion performed by causing the rest of the mixture gas inside the cylinder to self-ignite is executed within a part of an operating range of the engine, is provided. The device includes a detector configured to detect a parameter related to noise caused by the combustion inside the cylinder, a memory configured to store a characteristic defining a relationship between a start timing of the CI combustion and a combustion noise index, and a processor configured to specify a given combustion noise index value based on the detection value of the detector, and control the start timing of the CI combustion.Type: GrantFiled: August 8, 2018Date of Patent: November 19, 2019Assignee: Mazda Motor CorporationInventors: Kenichi Nakashima, Keitaro Ezumi, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma, Takuji Okumura, Kensuke Ashikaga, Masayoshi Higashio
-
Patent number: 10240491Abstract: A control system of an engine is provided. The control system includes an exhaust variable valve mechanism for changing an operation mode of an exhaust valve, a fuel injection controlling module for controlling a fuel injector to inject fuel at a fuel injection timing associated with an operating state of the engine, a variable valve mechanism controlling module for operating the exhaust valve via the exhaust variable valve mechanism in a first operation mode when the operating state of the engine is within a compression self-ignition range, and in a second operation mode when the operating state of the engine is within a spark-ignition range, and a first in-cylinder state quantity estimating module for estimating a first state quantity inside the cylinder relating to a burned gas amount within the cylinder.Type: GrantFiled: January 27, 2016Date of Patent: March 26, 2019Assignee: Mazda Motor CorporationInventors: Shuhei Shintani, Takuji Okumura, Hiroaki Horiuchi, Shigeru Nakagawa
-
Publication number: 20190063394Abstract: A control device for an engine in which partial compression-ignition combustion including SI combustion performed by forcibly combusting a portion of mixture gas inside a cylinder followed by CI combustion performed by causing the rest of the mixture gas inside the cylinder to self-ignite is executed within a part of an operating range of the engine, is provided. The device includes a detector configured to detect a parameter related to noise caused by the combustion inside the cylinder, a memory configured to store a characteristic defining a relationship between a start timing of the CI combustion and a combustion noise index, and a processor configured to specify a given combustion noise index value based on the detection value of the detector, and control the start timing of the CI combustion.Type: ApplicationFiled: August 8, 2018Publication date: February 28, 2019Inventors: Kenichi Nakashima, Keitaro Ezumi, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma, Takuji Okumura, Kensuke Ashikaga, Masayoshi Higashio
-
Publication number: 20170287651Abstract: An object of the present invention is to provide a capacitor and a capacitor module having a long life and capable of a stable action. Therefore, an electrolytic solution L obtained by dissolving an electrolyte salt having a lower hydrolyzability and a higher reaction potential in an electrode than an amidine salt containing a cation which is an imidazolium in a solvent and a sub solvent that reduces resistance of the electrolytic solution is packed in a cell. The electrolyte salt is a quaternary ammonium salt, the solvent is propylene carbonate, and the sub solvent is dimethyl carbonate. The quaternary ammonium salt is triethylmethylammonium tetrafluoroborate or azacyclobutane-1-spiro-1?-azacyclobutyl tetrafluoroborate. A pressure regulating valve 6 for regulating an inner pressure in the cell is disposed. A portion of the electrolytic solution L to be vaporized during use is packed in the cell as an excessive electrolytic solution in advance.Type: ApplicationFiled: March 31, 2016Publication date: October 5, 2017Inventors: Koji Maeda, Yutaka Itou, Go Sakuma, Takuji Okumura, Akihiko Souda, Takayoshi Endou
-
Publication number: 20160245128Abstract: A control system of an engine is provided. The control system includes an exhaust variable valve mechanism for changing an operation mode of an exhaust valve, a fuel injection controlling module for controlling a fuel injector to inject fuel at a fuel injection timing associated with an operating state of the engine, a variable valve mechanism controlling module for operating the exhaust valve via the exhaust variable valve mechanism in a first operation mode when the operating state of the engine is within a compression self-ignition range, and in a second operation mode when the operating state of the engine is within a spark-ignition range, and a first in-cylinder state quantity estimating module for estimating a first state quantity inside the cylinder relating to a burned gas amount within the cylinder.Type: ApplicationFiled: January 27, 2016Publication date: August 25, 2016Inventors: Shuhei Shintani, Takuji Okumura, Hiroaki Horiuchi, Shigeru Nakagawa
-
Patent number: 8150784Abstract: A device controls an object in a time variant system with a dead time such as a Czochralski method single crystal production device (CZ equipment). The dead time, time constant, and process gain value of an object (CZ equipment) are set. The process gain preset value has time variant characteristics. An output value and its first-order and second-order time differentiated values serve as the state variable. A nonlinear state predicting unit predicts a state variable value at a future time, based upon the current output value, dead time, time constant, and process gain preset value. A gain scheduled sliding mode control unit performs a gain scheduled sliding mode control operation based upon the state variable value at the future time, an output deviation at the future time, the time constant, and the set value of the process gain at the future time, to determine the manipulated variable of the object.Type: GrantFiled: June 7, 2006Date of Patent: April 3, 2012Assignee: Sumco Techxiv CorporationInventors: Kenichi Bandoh, Shigeo Morimoto, Takuji Okumura, Tetsu Nagata, Masaru Shimada, Junsuke Tomioka, Yutaka Shiraishi, Takeshi Kodama
-
Patent number: 7918934Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.Type: GrantFiled: November 29, 2006Date of Patent: April 5, 2011Assignee: Sumco Techxiv CorporationInventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
-
Publication number: 20100100217Abstract: To accurately control controlled object in a time variant system with a dead time such as a Czochralski method single crystal production device (CZ equipment). The dead time, the time constant, and the process gain value of a controlled object (CZ equipment) (200) are set. The process gain preset value has specified time variant characteristics. An output value y and its first-order and second-order time differentiated values are used as the state variable x of the controlled object (200). A nonlinear state predicting unit (206) predicts a state variable value x(t+Ld) at a future point in time after the dead time, based upon the current output value y, the dead time, the time constant, and the process gain preset value.Type: ApplicationFiled: June 7, 2006Publication date: April 22, 2010Applicant: SUMCO TECHXIV CORPORATIONInventors: Kenichi Bandoh, Shigeo Morimoto, Takuji Okumura, Tetsu Nagata, Masaru Shimada, Junsuke Tomioka, Yutaka Shiraishi, Takeshi Kodama
-
Publication number: 20070068448Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.Type: ApplicationFiled: November 29, 2006Publication date: March 29, 2007Applicant: Komatsu Denshi Kinzoku Kabushiki KaishaInventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
-
Patent number: 7160386Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.Type: GrantFiled: September 27, 2002Date of Patent: January 9, 2007Assignee: Komatsu Denshi Kinzoku Kabushiki KaishaInventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
-
Publication number: 20040211359Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.Type: ApplicationFiled: February 20, 2004Publication date: October 28, 2004Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto