Patents by Inventor Takuji Okumura

Takuji Okumura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10934962
    Abstract: An abnormality diagnosis device of an in-cylinder pressure sensor is provided. The device carries out a performance determination in which a performance quality of the sensor is determined based on an electric signal inputted from the sensor. The device carries out a first determination in which the performance determination is performed at a given timing, a performance recovery in which a given deposit removal control is executed in which a deposit accumulating inside the combustion chamber is removed when the performance quality of the in-cylinder pressure sensor is determined to fall below a given reference value, and a second determination in which the performance determination is carried out again after the performance recovery. In the second determination, the in-cylinder pressure sensor is diagnosed as abnormal when the performance quality of the sensor is determined to fall below the given reference value.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: March 2, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Patent number: 10876488
    Abstract: A failure diagnosis device for an in-cylinder pressure sensor is provided, which includes an in-cylinder pressure sensor, and an engine controller comprised of circuitry configured to execute a diagnosis module into which a signal of the sensor is inputted, to diagnose a failure of the sensor based on the signal. The diagnosis module includes a reading module configured to read the signal of the sensor within a specific crank angle range, a reference phase determining module configured to determine a reference phase that is a phase of a pressure change accompanying a volume change of the combustion chamber, and a failure determining module configured to determine that the sensor has failed, when the failure determining module determines a phase of the read signal of the sensor is delayed by an amount exceeding a predefined threshold from the determined reference phase.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: December 29, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Patent number: 10815917
    Abstract: A failure diagnosis system for an in-cylinder pressure sensor is provided, which includes an in-cylinder pressure sensor, a fuel injection valve, an engine controller including an engine control module and a diagnosis module. The engine control module controls the fuel injection valve to stop the supply of fuel to the engine, when a fuel cut condition is satisfied while the automobile travels. The diagnosis module includes a limiting module configured to limit an execution of the failure diagnosis of the in-cylinder pressure sensor until the diagnosis module determines that a given period has lapsed after the stop of fuel supply to the engine. The diagnosis module reads a signal of the in-cylinder pressure sensor when the given period has lapsed after the stop of the fuel supply to the engine, and diagnoses the failure of the in-cylinder pressure sensor based on the read signal of the in-cylinder pressure sensor.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: October 27, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Patent number: 10767592
    Abstract: A failure diagnosis device for an in-cylinder pressure sensor includes an in-cylinder pressure sensor, and a controller comprised of circuitry configured to execute a diagnosis module into which a signal of the in-cylinder pressure sensor is inputted and configured to diagnose a failure of the sensor based on the signal. The diagnosis module includes a reading module configured to read the signals of the in-cylinder pressure sensor at a first timing that is a timing retarded by a specific crank angle from a compression top dead center, and at a second timing that is a timing advanced by the specific crank angle from the compression top dead center, and a failure determining module configured to determine that the in-cylinder pressure sensor has failed when the failure determining module determines that a difference between signal values at the first timing and at the second timing exceeds a predefined threshold.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: September 8, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Publication number: 20200200112
    Abstract: An abnormality diagnosis device of an in-cylinder pressure sensor is provided. The device carries out a performance determination in which a performance quality of the sensor is determined based on an electric signal inputted from the sensor. The device carries out a first determination in which the performance determination is performed at a given timing, a performance recovery in which a given deposit removal control is executed in which a deposit accumulating inside the combustion chamber is removed when the performance quality of the in-cylinder pressure sensor is determined to fall below a given reference value, and a second determination in which the performance determination is carried out again after the performance recovery. In the second determination, the in-cylinder pressure sensor is diagnosed as abnormal when the performance quality of the sensor is determined to fall below the given reference value.
    Type: Application
    Filed: October 25, 2019
    Publication date: June 25, 2020
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Publication number: 20200072148
    Abstract: A failure diagnosis system for an in-cylinder pressure sensor is provided, which includes an in-cylinder pressure sensor, a fuel injection valve, an engine controller including an engine control module and a diagnosis module. The engine control module controls the fuel injection valve to stop the supply of fuel to the engine, when a fuel cut condition is satisfied while the automobile travels. The diagnosis module includes a limiting module configured to limit an execution of the failure diagnosis of the in-cylinder pressure sensor until the diagnosis module determines that a given period has lapsed after the stop of fuel supply to the engine. The diagnosis module reads a signal of the in-cylinder pressure sensor when the given period has lapsed after the stop of the fuel supply to the engine, and diagnoses the failure of the in-cylinder pressure sensor based on the read signal of the in-cylinder pressure sensor.
    Type: Application
    Filed: July 2, 2019
    Publication date: March 5, 2020
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Publication number: 20200072150
    Abstract: A failure diagnosis device for an in-cylinder pressure sensor includes an in-cylinder pressure sensor, and a controller comprised of circuitry configured to execute a diagnosis module into which a signal of the in-cylinder pressure sensor is inputted and configured to diagnose a failure of the sensor based on the signal. The diagnosis module includes a reading module configured to read the signals of the in-cylinder pressure sensor at a first timing that is a timing retarded by a specific crank angle from a compression top dead center, and at a second timing that is a timing advanced by the specific crank angle from the compression top dead center, and a failure determining module configured to determine that the in-cylinder pressure sensor has failed when the failure determining module determines that a difference between signal values at the first timing and at the second timing exceeds a predefined threshold.
    Type: Application
    Filed: July 2, 2019
    Publication date: March 5, 2020
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Publication number: 20200072149
    Abstract: A failure diagnosis device for an in-cylinder pressure sensor is provided, which includes an in-cylinder pressure sensor, and an engine controller comprised of circuitry configured to execute a diagnosis module into which a signal of the sensor is inputted, to diagnose a failure of the sensor based on the signal. The diagnosis module includes a reading module configured to read the signal of the sensor within a specific crank angle range, a reference phase determining module configured to determine a reference phase that is a phase of a pressure change accompanying a volume change of the combustion chamber, and a failure determining module configured to determine that the sensor has failed, when the failure determining module determines a phase of the read signal of the sensor is delayed by an amount exceeding a predefined threshold from the determined reference phase.
    Type: Application
    Filed: July 2, 2019
    Publication date: March 5, 2020
    Inventors: Shoji Fujiwara, Hidetoshi Hashimoto, Takuji Okumura, Shigeru Nakagawa, Yasushi Torii, Masayuki Kinoshita, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma
  • Patent number: 10480479
    Abstract: A control device for an engine in which partial compression-ignition combustion including SI combustion performed by forcibly combusting a portion of mixture gas inside a cylinder followed by CI combustion performed by causing the rest of the mixture gas inside the cylinder to self-ignite is executed within a part of an operating range of the engine, is provided. The device includes a detector configured to detect a parameter related to noise caused by the combustion inside the cylinder, a memory configured to store a characteristic defining a relationship between a start timing of the CI combustion and a combustion noise index, and a processor configured to specify a given combustion noise index value based on the detection value of the detector, and control the start timing of the CI combustion.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: November 19, 2019
    Assignee: Mazda Motor Corporation
    Inventors: Kenichi Nakashima, Keitaro Ezumi, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma, Takuji Okumura, Kensuke Ashikaga, Masayoshi Higashio
  • Patent number: 10240491
    Abstract: A control system of an engine is provided. The control system includes an exhaust variable valve mechanism for changing an operation mode of an exhaust valve, a fuel injection controlling module for controlling a fuel injector to inject fuel at a fuel injection timing associated with an operating state of the engine, a variable valve mechanism controlling module for operating the exhaust valve via the exhaust variable valve mechanism in a first operation mode when the operating state of the engine is within a compression self-ignition range, and in a second operation mode when the operating state of the engine is within a spark-ignition range, and a first in-cylinder state quantity estimating module for estimating a first state quantity inside the cylinder relating to a burned gas amount within the cylinder.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: March 26, 2019
    Assignee: Mazda Motor Corporation
    Inventors: Shuhei Shintani, Takuji Okumura, Hiroaki Horiuchi, Shigeru Nakagawa
  • Publication number: 20190063394
    Abstract: A control device for an engine in which partial compression-ignition combustion including SI combustion performed by forcibly combusting a portion of mixture gas inside a cylinder followed by CI combustion performed by causing the rest of the mixture gas inside the cylinder to self-ignite is executed within a part of an operating range of the engine, is provided. The device includes a detector configured to detect a parameter related to noise caused by the combustion inside the cylinder, a memory configured to store a characteristic defining a relationship between a start timing of the CI combustion and a combustion noise index, and a processor configured to specify a given combustion noise index value based on the detection value of the detector, and control the start timing of the CI combustion.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 28, 2019
    Inventors: Kenichi Nakashima, Keitaro Ezumi, Yuichiro Tsumura, Daisuke Tanaka, Taiki Maiguma, Takuji Okumura, Kensuke Ashikaga, Masayoshi Higashio
  • Publication number: 20170287651
    Abstract: An object of the present invention is to provide a capacitor and a capacitor module having a long life and capable of a stable action. Therefore, an electrolytic solution L obtained by dissolving an electrolyte salt having a lower hydrolyzability and a higher reaction potential in an electrode than an amidine salt containing a cation which is an imidazolium in a solvent and a sub solvent that reduces resistance of the electrolytic solution is packed in a cell. The electrolyte salt is a quaternary ammonium salt, the solvent is propylene carbonate, and the sub solvent is dimethyl carbonate. The quaternary ammonium salt is triethylmethylammonium tetrafluoroborate or azacyclobutane-1-spiro-1?-azacyclobutyl tetrafluoroborate. A pressure regulating valve 6 for regulating an inner pressure in the cell is disposed. A portion of the electrolytic solution L to be vaporized during use is packed in the cell as an excessive electrolytic solution in advance.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventors: Koji Maeda, Yutaka Itou, Go Sakuma, Takuji Okumura, Akihiko Souda, Takayoshi Endou
  • Publication number: 20160245128
    Abstract: A control system of an engine is provided. The control system includes an exhaust variable valve mechanism for changing an operation mode of an exhaust valve, a fuel injection controlling module for controlling a fuel injector to inject fuel at a fuel injection timing associated with an operating state of the engine, a variable valve mechanism controlling module for operating the exhaust valve via the exhaust variable valve mechanism in a first operation mode when the operating state of the engine is within a compression self-ignition range, and in a second operation mode when the operating state of the engine is within a spark-ignition range, and a first in-cylinder state quantity estimating module for estimating a first state quantity inside the cylinder relating to a burned gas amount within the cylinder.
    Type: Application
    Filed: January 27, 2016
    Publication date: August 25, 2016
    Inventors: Shuhei Shintani, Takuji Okumura, Hiroaki Horiuchi, Shigeru Nakagawa
  • Patent number: 8150784
    Abstract: A device controls an object in a time variant system with a dead time such as a Czochralski method single crystal production device (CZ equipment). The dead time, time constant, and process gain value of an object (CZ equipment) are set. The process gain preset value has time variant characteristics. An output value and its first-order and second-order time differentiated values serve as the state variable. A nonlinear state predicting unit predicts a state variable value at a future time, based upon the current output value, dead time, time constant, and process gain preset value. A gain scheduled sliding mode control unit performs a gain scheduled sliding mode control operation based upon the state variable value at the future time, an output deviation at the future time, the time constant, and the set value of the process gain at the future time, to determine the manipulated variable of the object.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: April 3, 2012
    Assignee: Sumco Techxiv Corporation
    Inventors: Kenichi Bandoh, Shigeo Morimoto, Takuji Okumura, Tetsu Nagata, Masaru Shimada, Junsuke Tomioka, Yutaka Shiraishi, Takeshi Kodama
  • Patent number: 7918934
    Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: April 5, 2011
    Assignee: Sumco Techxiv Corporation
    Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
  • Publication number: 20100100217
    Abstract: To accurately control controlled object in a time variant system with a dead time such as a Czochralski method single crystal production device (CZ equipment). The dead time, the time constant, and the process gain value of a controlled object (CZ equipment) (200) are set. The process gain preset value has specified time variant characteristics. An output value y and its first-order and second-order time differentiated values are used as the state variable x of the controlled object (200). A nonlinear state predicting unit (206) predicts a state variable value x(t+Ld) at a future point in time after the dead time, based upon the current output value y, the dead time, the time constant, and the process gain preset value.
    Type: Application
    Filed: June 7, 2006
    Publication date: April 22, 2010
    Applicant: SUMCO TECHXIV CORPORATION
    Inventors: Kenichi Bandoh, Shigeo Morimoto, Takuji Okumura, Tetsu Nagata, Masaru Shimada, Junsuke Tomioka, Yutaka Shiraishi, Takeshi Kodama
  • Publication number: 20070068448
    Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.
    Type: Application
    Filed: November 29, 2006
    Publication date: March 29, 2007
    Applicant: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
  • Patent number: 7160386
    Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: January 9, 2007
    Assignee: Komatsu Denshi Kinzoku Kabushiki Kaisha
    Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
  • Publication number: 20040211359
    Abstract: A single crystal semiconductor manufacturing apparatus in which the concentration of oxygen in a single crystal semiconductor is controlled while pulling up a single crystal semiconductor such as single crystal silicon by the CZ method, a single crystal semiconductor manufacturing method, and a single crystal ingot manufactured by the method are disclosed. The natural convection (20) in the melt (5) in a quartz crucible (3) is controlled by regulating the temperatures at a plurality of parts of the melt (5). A single crystal semiconductor (6) can have a desired diameter by regulating the amount of heat produced by heating means (9a) on the upper side. Further the ratio between the amount of heat produced by the upper-side heating means (9a) and that by the lower-side heating means (9b) is adjusted to vary the process condition. In the adjustment, the amount of heat produced by the lower-side heating means (9b) is controlled to a relatively large proportion.
    Type: Application
    Filed: February 20, 2004
    Publication date: October 28, 2004
    Inventors: Yutaka Shiraishi, Jyunsuke Tomioka, Takuji Okumura, Tadayuki Hanamoto, Takehiro Komatsu, Shigeo Morimoto
  • Patent number: 6530338
    Abstract: A flag set may comprise a pole (10) and a plurality of flag units (20a, 20b) that can be attached to the pole (10) at different angles with respect to the pole (10). A support arm (30) may hold the top edges of the plurality of flag units (20a, 20b). An attachment part (40) is provided at the top of the pole (10) and may include attachment slits (47) and attachment grooves (48) that open upward so that the support arm (30) can be inserted from the top. A fastening part (50) anchors the support arm (30) to the attachment slits (47) and attachment grooves (48). The fastening part (50) is attached to the attachment part (40) after the support arm (30) is inserted into the attachment slits (47) and attachment grooves (48) to lock these parts together.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: March 11, 2003
    Inventors: Takuji Okumura, Takuya Okumura