Patents by Inventor Takuma YAGI

Takuma YAGI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11972947
    Abstract: A semiconductor laminate film includes a silicon substrate and a semiconductor layer formed on the silicon substrate and containing silicon and germanium. The semiconductor layer having a surface roughness Rms of 1 nm or less. Further, the semiconductor layer satisfies the following relationship t?0.881×x?4.79 where t represents a thickness (nm) of the semiconductor layer, and x represents a ratio of the number of germanium atoms to a sum of the number of silicon atoms and the number of germanium atoms in the semiconductor layer. Also, the semiconductor layer being a mixed crystal semiconductor layer containing silicon and germanium.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: April 30, 2024
    Assignees: National University Corporation Tokyo University Of Agriculture And Technology, National Institute of Information and Communications Technology
    Inventors: Yoshiyuki Suda, Takahiro Tsukamoto, Akira Motohashi, Kyohei Degura, Katsumi Okubo, Takuma Yagi, Akifumi Kasamatsu, Nobumitsu Hirose, Toshiaki Matsui
  • Patent number: 11492696
    Abstract: A method of producing a semiconductor laminate film includes forming a semiconductor layer containing silicon and germanium on a silicon substrate by a sputtering method. In the sputtering method, a film formation temperature of the semiconductor layer is less than 500° C., and a film formation pressure of the semiconductor layer ranges from 1 mTorr to 11 mTorr, or, a film formation temperature of the semiconductor layer is less than 600° C., and a film formation pressure of the semiconductor layer is equal to or more than 2 mTorr and less than 5 mTorr. The sputtering method uses a sputtering gas having a volume ratio of a hydrogen gas of less than 0.1%, and the semiconductor layer satisfies a relationship of t?0.881×x?4.79, where t represents a thickness (nm) of the semiconductor layer, and x represents a ratio of the number of germanium atoms to a sum of the number of silicon atoms and the number of germanium atoms in the semiconductor layer.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: November 8, 2022
    Inventors: Yoshiyuki Suda, Takahiro Tsukamoto, Akira Motohashi, Kyohei Degura, Katsumi Okubo, Takuma Yagi, Akifumi Kasamatsu, Nobumitsu Hirose, Toshiaki Matsui
  • Publication number: 20210189549
    Abstract: A semiconductor laminate film includes a silicon substrate and a semiconductor layer formed on the silicon substrate and containing silicon and germanium. The semiconductor layer having a surface roughness Rms of 1 nm or less. Further, the semiconductor layer satisfies the following relationship t?0.881×x?4.79 where t represents a thickness (nm) of the semiconductor layer, and x represents a ratio of the number of germanium atoms to a sum of the number of silicon atoms and the number of germanium atoms in the semiconductor layer. Also, the semiconductor layer being a mixed crystal semiconductor layer containing silicon and germanium.
    Type: Application
    Filed: March 10, 2021
    Publication date: June 24, 2021
    Inventors: Yoshiyuki SUDA, Takahiro TSUKAMOTO, Akira MOTOHASHI, Kyohei DEGURA, Katsumi OKUBO, Takuma YAGI, Akifumi KASAMATSU, Nobumitsu HIROSE, Toshiaki MATSUI
  • Publication number: 20190242008
    Abstract: A method of producing a semiconductor laminate film includes forming a semiconductor layer containing silicon and germanium on a silicon substrate by a sputtering method. In the sputtering method, a film formation temperature of the semiconductor layer is less than 500° C., and a film formation pressure of the semiconductor layer ranges from 1 mTorr to 11 mTorr, or, a film formation temperature of the semiconductor layer is less than 600° C., and a film formation pressure of the semiconductor layer is equal to or more than 2 mTorr and less than 5 mTorr. The sputtering method uses a sputtering gas having a volume ratio of a hydrogen gas of less than 0.1%, and the semiconductor layer satisfies a relationship of t?0.881×x?4.79, where t represents a thickness (nm) of the semiconductor layer, and x represents a ratio of the number of germanium atoms to a sum of the number of silicon atoms and the number of germanium atoms in the semiconductor layer.
    Type: Application
    Filed: July 12, 2017
    Publication date: August 8, 2019
    Inventors: Yoshiyuki SUDA, Takahiro TSUKAMOTO, Akira MOTOHASHI, Kyohei DEGURA, Katsumi OKUBO, Takuma YAGI, Akifumi KASAMATSU, Nobumitsu HIROSE, Toshiaki MATSUI
  • Patent number: 8880342
    Abstract: A moving body position detection system including an unit acquiring dead reckoning navigation information including a moving body direction; a unit identifying a moving body position based on the dead reckoning navigation information on the moving body; a unit predicting a predicted arrived position of the moving body after a predetermined interval from the position of the moving body based on the dead reckoning navigation information on the moving body; a unit calculating a difference direction angle between a direction from the position of the moving body to the predicted position and the direction of the moving body; a unit correcting the difference direction angle if it is equal to or larger than a threshold; and a unit updating the moving body position based on the difference direction angle.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: November 4, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Yohei Ando, Takuma Yagi
  • Patent number: 8868334
    Abstract: A moving body position detection system including a unit that acquires dead reckoning navigation information on a moving body; a unit that identifies a position on the moving body on a link based on the dead reckoning navigation information on the moving body; a unit that acquires current position link data on a current position link and neighboring link data on a neighboring link. The current position link is a link on which the moving body position is located, and the neighboring link is connected to the current position link. The system also includes a unit that compares the dead reckoning navigation information on the moving body with the current position link data and with the neighboring link data; and a unit that updates the position of the moving body based on a comparison result of the comparison unit.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: October 21, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Yohei Ando, Takuma Yagi
  • Publication number: 20130245934
    Abstract: A moving body position detection system including a unit that acquires dead reckoning navigation information on a moving body; a unit that identifies a position on the moving body on a link based on the dead reckoning navigation information on the moving body; a unit that acquires current position link data on a current position link and neighboring link data on a neighboring link. The current position link is a link on which the moving body position is located, and the neighboring link is connected to the current position link. The system also includes a unit that compares the dead reckoning navigation information on the moving body with the current position link data and with the neighboring link data; and a unit that updates the position of the moving body based on a comparison result of the comparison unit.
    Type: Application
    Filed: January 11, 2013
    Publication date: September 19, 2013
    Inventors: Yohei ANDO, Takuma YAGI
  • Publication number: 20130245936
    Abstract: A moving body position detection system including an unit acquiring dead reckoning navigation information including a moving body direction; a unit identifying a moving body position based on the dead reckoning navigation information on the moving body; a unit predicting a predicted arrived position of the moving body after a predetermined interval from the position of the moving body based on the dead reckoning navigation information on the moving body; a unit calculating a difference direction angle between a direction from the position of the moving body to the predicted position and the direction of the moving body; a unit correcting the difference direction angle if it is equal to or larger than a threshold; and a unit updating the moving body position based on the difference direction angle.
    Type: Application
    Filed: January 10, 2013
    Publication date: September 19, 2013
    Inventors: Yohei ANDO, Takuma YAGI