Patents by Inventor Takumi KOUNO

Takumi KOUNO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10886539
    Abstract: A carbon material for catalyst carrier use excellent in both durability and power generation performance under operating conditions at the time of low humidity, in particular both durability of a carbon material for catalyst carrier use with respect to repeated load fluctuations due to startup and shutdown and power generation performance under operating conditions at the time of low humidity, and a catalyst for solid-polymer fuel cell use prepared using the same etc. are provided. To solve this technical problem, according to one aspect of the present invention, there is provided a carbon material for catalyst carrier use satisfying the following (A) to (D): (A) an oxygen content OICP of 0.1 to 3.0 mass % contained in the carbon material for catalyst carrier use; (B) a residual amount of oxygen O1200° C. of 0.1 to 1.5 mass % remaining after heat treatment in an inert gas (or vacuum) atmosphere at 1200° C.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: January 5, 2021
    Assignee: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Takashi Iijima, Noriyuki Negi, Masataka Hiyoshi, Katsumasa Matsumoto, Shinya Furukawa, Kenichiro Tadokoro, Takumi Nishimoto, Hiroyuki Hayashida, Takumi Kouno, Kazuhiko Mizuuchi
  • Patent number: 10096837
    Abstract: Provided are: a supporting carbon material for a solid polymer fuel cell, said supporting carbon material making it possible to produce a high-performance solid polymer fuel cell in which there is little decrease in power generation performance as a result of repeated battery load fluctuation that inevitably occurs during operation of the solid polymer fuel cell; and a catalyst metal particle-supporting carbon material. The present invention relates to: a supporting carbon material for a solid polymer fuel cell, said supporting carbon material being a porous carbon material in which the specific surface area of mesopores having a pore diameter of 2-50 nm according to nitrogen adsorption measurement is 600-1,600 m2/g, the relative intensity ratio (IG?/IG) of the peak intensity (IG?) of the G-band 2,650-2,700 cm?1 range to the peak intensity (IG) of the G-band 1,550-1,650 cm?1 range in the Raman spectrum is 0.8-2.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: October 9, 2018
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, NIPPON STEEL & SUMIKIN CHEMICAL CO., LTD.
    Inventors: Takashi Iijima, Masataka Hiyoshi, Katsumasa Matsumoto, Hiroyuki Hayashida, Kazuhiko Mizuuchi, Takumi Kouno, Masakazu Higuchi, Masakazu Katayama
  • Patent number: 10003085
    Abstract: Provided are a supporting carbon material for a solid polymer fuel cell and a metal-catalyst-particle-supporting carbon material that, when used as a carrier for a solid polymer fuel cell catalyst, have excellent power generation performance in high-humidity conditions, which are conditions in which solid polymer fuel cells are operated. A supporting carbon material for a solid polymer fuel cell and a metal-catalyst-particle-supporting carbon material characterized in being a porous carbon material, the hydrogen content being 0.004-0.010% by mass, the nitrogen adsorption BET specific surface area being 600 m2/g-1500 m2/g, and the relative intensity ratio (ID/IG) between the peak intensity (ID) in the range of 1200-1400 cm?1 known as the D-band and the peak intensity (IG) in the range of 1500-1700 cm?1 known as the G-band, obtained from the Raman spectrum, being 1.0-2.0.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: June 19, 2018
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, NIPPON STEEL & SUMIKIN CHEMICAL CO., LTD.
    Inventors: Katsumasa Matsumoto, Takashi Iijima, Masataka Hiyoshi, Hiroyuki Hayashida, Kazuhiko Mizuuchi, Takumi Kouno, Masakazu Higuchi, Masakazu Katayama
  • Publication number: 20180069247
    Abstract: A carbon material for catalyst carrier use excellent in both durability and power generation performance under operating conditions at the time of low humidity, in particular both durability of a carbon material for catalyst carrier use with respect to repeated load fluctuations due to startup and shutdown and power generation performance under operating conditions at the time of low humidity, and a catalyst for solid-polymer fuel cell use prepared using the same etc. are provided. To solve this technical problem, according to one aspect of the present invention, there is provided a carbon material for catalyst carrier use satisfying the following (A) to (D): (A) an oxygen content OICP of 0.1 to 3.0 mass % contained in the carbon material for catalyst carrier use; (B) a residual amount of oxygen O1200° C. of 0.1 to 1.5 mass % remaining after heat treatment in an inert gas (or vacuum) atmosphere at 1200° C.
    Type: Application
    Filed: February 17, 2016
    Publication date: March 8, 2018
    Applicants: NIPPON STEEL & SUMITOMO METAL CORPORATION, NIPPON STEEL & SUMIKIN CHEMICAL CO., LTD.
    Inventors: Takashi IIJIMA, Noriyuki NEGI, Masataka HIYOSHI, Katsumasa MATSUMOTO, Shinya FURUKAWA, Kenichiro TADOKORO, Takumi NISHIMOTO, Hiroyuki HAYASHIDA, Takumi KOUNO, Kazuhiko MIZUUCHI
  • Publication number: 20170194652
    Abstract: Provided are: a supporting carbon material for a solid polymer fuel cell, said supporting carbon material making it possible to produce a high-performance solid polymer fuel cell in which there is little decrease in power generation performance as a result of repeated battery load fluctuation that inevitably occurs during operation of the solid polymer fuel cell; and a catalyst metal particle-supporting carbon material. The present invention relates to: a supporting carbon material for a solid polymer fuel cell, said supporting carbon material being a porous carbon material in which the specific surface area of mesopores having a pore diameter of 2-50 nm according to nitrogen adsorption measurement is 600-1,600 m2/g, the relative intensity ratio (IG?/IG) of the peak intensity (IG?) of the G-band 2,650-2,700 cm?1 range to the peak intensity (IG) of the G-band 1,550-1,650 cm?1 range in the Raman spectrum is 0.8-2.
    Type: Application
    Filed: March 19, 2015
    Publication date: July 6, 2017
    Applicants: NIPPON STEEL & SUMITOMO METAL CORPORATION, NIPPON STEEL & SUMIKIN CHEMICAL CO., LTD.
    Inventors: Takashi IIJIMA, Masataka HIYOSHI, Katsumasa MATSUMOTO, Hiroyuki HAYASHIDA, Kazuhiko MIZUUCHI, Takumi KOUNO, Masakazu HIGUCHI, Masakazu KATAYAMA
  • Publication number: 20160329571
    Abstract: Provided are a supporting carbon material for a solid polymer fuel cell and a metal-catalyst-particle-supporting carbon material that, when used as a carrier for a solid polymer fuel cell catalyst, have excellent power generation performance in high-humidity conditions, which are conditions in which solid polymer fuel cells are operated. A supporting carbon material for a solid polymer fuel cell and a metal-catalyst-particle-supporting carbon material characterized in being a porous carbon material, the hydrogen content being 0.004-0.010% by mass, the nitrogen adsorption BET specific surface area being 600 m2/g-1500 m2/g, and the relative intensity ratio (ID/IG) between the peak intensity (ID) in the range of 1200-1400 cm?1 known as the D-band and the peak intensity (IG) in the range of 1500-1700 cm?1 known as the G-band, obtained from the Raman spectrum, being 1.0-2.0.
    Type: Application
    Filed: December 12, 2014
    Publication date: November 10, 2016
    Applicants: NIPPON STEEL & SUMITOMO METAL CORPORATION, NIPPON STEEL & SUMIKIN CHEMICAL CO., LTD.
    Inventors: Katsumasa MATSUMOTO, Takashi IIJIMA, Masataka HIYOSHI, Hiroyuki HAYASHIDA, Kazuhiko MIZUUCHI, Takumi KOUNO, Masakazu HIGUCHI, Masakazu KATAYAMA
  • Publication number: 20150352522
    Abstract: A carbon material for catalyst support use which, when used as a catalyst support, maintains a high porosity while being stable chemically, having electrical conductivity, being excellent in durability, and being excellent in diffusibility of the reaction starting materials and reaction products is provided. It is characterized by comprising dendritic carbon mesoporous structures which have 3D structures of branched carbon-containing rod shapes or carbon-containing ring shapes, having a pore size of 1 to 20 nm and a cumulative pore volume of 0.2 to 1.5 cc/g found by analyzing a nitrogen adsorption isotherm by the Dollimore-Heal method, and having a powder X-ray diffraction spectrum which has a peak corresponding to a 002 diffraction line of graphite between diffraction angles (2?: degrees) of 20 to 30 degrees and has a peak with a half value width of 0.1 degree to 1.0 degree at 25.5 to 26.5 degrees.
    Type: Application
    Filed: February 21, 2014
    Publication date: December 10, 2015
    Applicants: NIPPON STEEL & SUMITOMO METAL CORPORATION, NIPPON STEEL & SUMIKIN CHEMICAL CO., LTD.
    Inventors: Kazuhiko MIZUUCHI, Takumi KOUNO, Masakazu KATAYAMA, Masakazu HIGUCHI, Nobuyuki NISHI, Takashi IIJIMA, Masataka HIYOSHI, Katsumasa MATSUMOTO