Patents by Inventor Takuto Hirose

Takuto Hirose has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964265
    Abstract: Provided is a methanation catalyst processing method capable of suppressing degradation of a catalyst performance. A methanation catalyst processing method of the present disclosure includes oxidizing nickel through a heat treatment of a methanation catalyst by supplying an oxygen gas containing oxygen to a reactor, the reactor housing the methanation catalyst containing the nickel as a catalyst component. In the oxidizing, the oxygen gas is supplied to the reactor such that the oxygen is supplied to 1 g of the methanation catalyst at a supply rate in a range of from 0.0213 mmol-O2/sec·g-cat. to 0.0638 mmol-O2/sec·g-cat., and a time period of the heat treatment of the methanation catalyst by supplying the oxygen gas to the reactor is set to 30 minutes or more.
    Type: Grant
    Filed: April 26, 2023
    Date of Patent: April 23, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yusaku Onochi, Masakazu Aoki, Mitsuru Matsumoto, Takuto Hirose
  • Publication number: 20230381768
    Abstract: Provided is a methanation catalyst processing method capable of suppressing degradation of a catalyst performance. A methanation catalyst processing method of the present disclosure includes oxidizing nickel through a heat treatment of a methanation catalyst by supplying an oxygen gas containing oxygen to a reactor, the reactor housing the methanation catalyst containing the nickel as a catalyst component. In the oxidizing, the oxygen gas is supplied to the reactor such that the oxygen is supplied to 1 g of the methanation catalyst at a supply rate in a range of from 0.0213 mmol-O2/sec·g-cat. to 0.0638 mmol-O2/sec·g-cat., and a time period of the heat treatment of the methanation catalyst by supplying the oxygen gas to the reactor is set to 30 minutes or more.
    Type: Application
    Filed: April 26, 2023
    Publication date: November 30, 2023
    Inventors: Yusaku ONOCHI, Masakazu AOKI, Mitsuru MATSUMOTO, Takuto HIROSE
  • Patent number: 9617886
    Abstract: An exhaust gas controlling catalyst includes zirconia particles; ceria particles which contact the zirconia particles, of which a mean particle size is smaller than a mean particle size of the zirconia particles; and an active metal that is supported on at least the ceria particles in a dispersed manner.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: April 11, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Shigeharu Takagi, Akira Morikawa, Takuto Hirose
  • Patent number: 9475003
    Abstract: An exhaust gas purification catalyst includes an alumina support, a silica layer, and active metal particles. The silica layer is formed on a surface of the alumina support. The active metal particles are formed of platinum and palladium, the platinum and the palladium being supported on the silica layer. A ratio of fine particles having a particle size of 2.0 nm or less to all the active metal particles is 50% or higher in terms of the number of particles, the fine particles being included in the active metal particles. A ratio of fine alloy particles having a palladium content ratio of 10 at % to 90 at % to all the fine particles is 50% or higher in terms of the number of particles, the fine alloy particles being included in the fine particles.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: October 25, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takuto Hirose, Kiyoshi Yamazaki, Yuichi Sobue, Yusuke Shinmyo
  • Publication number: 20150343423
    Abstract: An exhaust gas purification catalyst includes an alumina support, a silica layer, and active metal particles. The silica layer is formed on a surface of the alumina support. The active metal particles are formed of platinum and palladium, the platinum and the palladium being supported on the silica layer. A ratio of fine particles having a particle size of 2.0 nm or less to all the active metal particles is 50% or higher in terms of the number of particles, the fine particles being included in the active metal particles. A ratio of fine alloy particles having a palladium content ratio of 10 at % to 90 at % to all the fine particles is 50% or higher in terms of the number of particles, the fine alloy particles being included in the fine particles.
    Type: Application
    Filed: June 1, 2015
    Publication date: December 3, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takuto HIROSE, Kiyoshi YAMAZAKI, Yuichi SOBUE, Yusuke SHINMYO
  • Patent number: 9005558
    Abstract: An exhaust gas control apparatus for an internal combustion engine includes: a NOx purification catalyst arranged in an exhaust passage of the internal combustion engine; a degradation degree estimating unit estimating a degradation degree of the NOx purification catalyst; and an air-fuel ratio control unit adjusting an air-fuel ratio of exhaust gas flowing into the NOx purification catalyst, wherein, until the estimated degradation degree of the NOx purification catalyst reaches a predetermined degradation degree, the air-fuel ratio control unit adjusts the air-fuel ratio of the exhaust gas to a rich air-fuel ratio, and, when the estimated degradation degree of the NOx purification catalyst exceeds the predetermined degradation degree, the air-fuel ratio control unit changes the air-fuel ratio of the exhaust gas from the rich air-fuel ratio to a lean air-fuel ratio so that the NOx purification catalyst is regenerated.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: April 14, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Shigeharu Takagi, Keisuke Kishita, Noboru Otake, Akira Morikawa, Takuto Hirose, Yasutaka Nagai
  • Publication number: 20140134087
    Abstract: An exhaust gas control apparatus for an internal combustion engine includes: a NOx purification catalyst arranged in an exhaust passage of the internal combustion engine; a degradation degree estimating unit estimating a degradation degree of the NOx purification catalyst; and an air-fuel ratio control unit adjusting an air-fuel ratio of exhaust gas flowing into the NOx purification catalyst, wherein, until the estimated degradation degree of the NOx purification catalyst reaches a predetermined degradation degree, the air-fuel ratio control unit adjusts the air-fuel ratio of the exhaust gas to a rich air-fuel ratio, and, when the estimated degradation degree of the NOx purification catalyst exceeds the predetermined degradation degree, the air-fuel ratio control unit changes the air-fuel ratio of the exhaust gas from the rich air-fuel ratio to a lean air-fuel ratio so that the NOx purification catalyst is regenerated.
    Type: Application
    Filed: May 30, 2012
    Publication date: May 15, 2014
    Inventors: Masao Watanabe, Shigeharu Takagi, Keisuke Kishita, Noboru Otake, Akira Morikawa, Takuto Hirose, Yasutaka Nagai
  • Publication number: 20140127084
    Abstract: An exhaust gas controlling catalyst includes zirconia particles; ceria particles which contact the zirconia particles, of which a mean particle size is smaller than a mean particle size of the zirconia particles; and an active metal that is supported on at least the ceria particles in a dispersed manner.
    Type: Application
    Filed: March 23, 2012
    Publication date: May 8, 2014
    Inventors: Masao Watanabe, Shigeharu Takagi, Akira Morikawa, Takuto Hirose
  • Publication number: 20130287640
    Abstract: A base metal exhaust gas control apparatus for an internal combustion engine includes a basic structure having a first-stage base metal catalyst that oxidizes HC and CO, and a second-stage base metal catalyst that reduces NOx. The first-stage base metal catalyst oxidizes HC more efficiently than it oxidizes CO.
    Type: Application
    Filed: January 12, 2012
    Publication date: October 31, 2013
    Inventors: Masao Watanabe, Shigeharu Takagai, Akira Morikawa, Takuto Hirose